【自动驾驶轨迹规划之dubins曲线与reeds-shepp曲线】

本文介绍了自动驾驶轨迹规划中的Dubins曲线和Reeds-Shepp曲线,包括它们的简介、计算与实现过程,以及最短路径选择。Dubins曲线考虑了车辆在不倒退情况下的最短路径,而Reeds-Shepp曲线则考虑了车辆前后运动,提供更丰富的轨迹选择。文中还探讨了如何在实际应用中选择最优路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

### Reeds-Shepp 曲线算法解释 Reeds-Shepp曲线由J.A.ReedsL.A.Sheep于1990年提出,旨在解决汽车既能前进又能倒车情况下的最优路径问题[^2]。相比于仅能前移的Dubins曲线,这种扩展显著提升了复杂环境中的路径优化能力。 #### 运动模式特点 该模型允许车辆执行三种基本操作:直行、转向左侧行驶以及转向右侧行驶;特别之处在于它不仅支持正向行驶还兼容反向移动。这赋予了其更强灵活性,在狭窄空间内找到更短捷径成为可能[^1]。 #### 算法核心原理 为了计算两点间最短路径,Reeds-Shepp算法通过一系列几何变换来简化原始问题: - **坐标变换**:调整起始位置至原点并设定初始方向为X轴正向。 - **时间翻转(time-flip)**:处理含有后退动作的情况,即将部分路段视为逆序遍历。 - **反射变换(reflect)**:当目标方位角超过特定阈值时应用此方法改变参照系。 - **后向变换(backwards)**:用于转换最终得到的结果回到实际物理场景中去。 这些技术手段共同作用下实现了高效求解任意两姿态间的最小距离路径方案。 ### 实现方式概览 针对不同开发平台提供了多种编程语言版本的具体实施方案说明文档,包括但不限于C++ (适用于ROS框架)、Python脚本形式及MATLAB工具箱接口调用等方式[^3]。每种实现都遵循上述理论基础构建而成,并根据各自特性进行了适当优化适配工作。 ```cpp // C++ 示例代码片段展示如何初始化ReedsShepp类对象 #include "reeds_shepp.h" int main() { reeds_shepp::State start{0, 0, 0}; // 起点状态(x,y,theta) reeds_shepp::State goal{10, 5, M_PI_2}; // 终点状态 std::vector<reeds_shepp::Path> paths; bool success = reeds_shepp::computePaths(start, goal, &paths); } ``` ```python # Python 示例代码片段展示了简单的路径查询过程 from reeds_shepp import PathPlanner planner = PathPlanner() start_pose = (0., 0., 0.) goal_pose = (8., 4., np.pi / 2) path = planner.plan_path(start_pose=start_pose, end_pose=goal_pose) print(f"Total length of the planned path is {sum([segment.length for segment in path])}") ``` ### 应用领域探讨 在自动驾驶领域特别是低速无人驾驶物流配送车、自动泊车辅助系统等方面有着广泛应用前景。由于能够精确控制车辆完成较为复杂的机动动作序列而备受青睐。此外,在机器人学研究里同样扮演着重要角色——帮助机械臂规划避障轨迹或是指导多足行走装置探索未知地形等任务均可见到此类算法的身影。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无意2121

创作不易,多多支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值