💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
算法参考这篇文章:
数学模型参考这篇文章:
求解算法换为非支配排序的蜣螂优化算法NSDBO,也算一个创新点。
当然学会了本文的方法,其他多目标优化算法可以任意换。什么多目标秃鹰、多目标灰狼、多目标鲸鱼、多目标鲨鱼.....全部都可以换:
微电网是指由多种分布式能源资源和负荷组成的小型电力系统,通常包括太阳能光伏、风能、储能设备等。微电网的多目标优化调度是指在满足微电网运行安全和经济性的前提下,对多个优化目标进行协调调度,如降低成本、提高可靠性、减少排放等。
非支配排序的蜣螂优化算法(NSDBO)是一种基于蜣螂群体行为的多目标优化算法,能够有效地求解微电网的多目标优化调度问题。该算法通过模拟蜣螂的觅食行为和非支配排序的思想,实现了对多个优化目标的协调优化。
NSDBO算法在求解微电网多目标优化调度问题时,首先通过模拟蜣螂的觅食行为,实现了对微电网中各种分布式能源资源和负荷的搜索和协调调度。其次,通过非支配排序的方法,有效地维护了多个优化目标之间的平衡和协调,使得算法能够在多个优化目标之间找到一组非支配解,从而实现了微电网的多目标优化调度。
微电网优化调度是指在满足系统的各种约束条件下,合理安排不同的 DG 出力和微网与主网之
间的输电功率,从而达到低运行成本、低排放、高可靠性、高发电效率等不同目标。对于需求侧来说,微电网的优化调度可以有效降低用户的用电成本。对于供电侧来说,微电网优化调度可以提高
电网的稳定性,减少电力生产的能量损耗以及环境污染。因此,对微电网进行优化调度有重要的
现实意义。
目前关于微电网运行调度方面已有大量研究。文献[1]以运行经济效益、削峰填谷效应作为优化目标,构建气电互联虚拟电厂多目标模型。文献[2]以运行成本、功率波动等调度目标建立了
考虑电动汽车充放电策略的多目标模型,但以上文献都未考虑环境污染问题。同时,微电网经济
调度大多是一个多约束、非线性优化问题。本文基于非支配排序的蜣螂优化算法NSDBO求解微电网多目标优化调度研究。
📚2 运行结果
部分代码:
function pg=plotFigure(Xbest,Fbest,idxn)
global P_load; %电负荷
global WT;%风电
global PV;%光伏
%% 比较不同目标函数寻优对调度结果的影响
if idxn==1
%% 第1种.将两个目标函数值归一化相加,取相加后最小的目标值的粒子,即寻找折衷解并画图
object=sum(Fbest./max(Fbest),2);
[~,idx]=min(object);
pg=Xbest(idx,:);
Title = sprintf('折衷解情况下');
elseif idxn==2
%% 第2种寻找总成本最低时的解并画图
[~,idx]=min(sum(Fbest,2));
pg=Xbest(idx,:);
Title = sprintf('总成本最低情况下');
elseif idxn==3
%% 第3种寻找运行成本最低时的解并画图
[~,idx]=min(Fbest(:,1));
pg=Xbest(idx,:);
Title = sprintf('运行成本最低情况下');
else
%% 第4种寻找环境保护成本最低时的解并画图
[~,idx]=min(Fbest(:,2));
pg=Xbest(idx,:);
Title = sprintf('环境保护成本最低情况下');
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。