💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
摘要:
在频分双工(FDD)多输入多输出(MIMO)无线通信中,有限的信道状态信息(CSI)反馈是支持高级单用户和多用户MIMO波束成形/预编码的核心工具。为了实现给定的CSI质量,CSI量化码本大小必须随着天线数量的增加呈指数级增长,导致量化复杂度以及对于更大MIMO系统的反馈开销问题。我们最近提出了一个多级递归Grassmann量化器,可以显著减少CSI量化的复杂度。在本文中,我们展示了这种递归量化器可以有效地与深度学习分类结合,进一步降低复杂度,并利用时间信道相关性来减少CSI反馈开销。
有限的信道状态信息(CSI)反馈是支持频分双工(FDD)系统中高效多输入多输出(MIMO)传输的一种成熟技术[1]–[4]。通常,采用Grassmannian CSI量化框架,因为许多流行的发射预编码方案需要子空间信息。存在许多构建Grassmannian量化码本的不同方法;例如,[5]–[8]仅举几种较新的构造方式。
通常,在无记忆量化的各向同性信道(如独立同分布(i.i.d.)的瑞利衰落信道)中,已知最大间隔子空间装配体在子空间弦距离方面实现了最优的量化性能;然而,这样的装配对于更大的MIMO系统和码本大小[9]–[11]的构建是困难的。在采用Grassmannian量化时,在大规模MIMO系统和/或高分辨率量化时,面临两个主要挑战:1)量化复杂度和2)反馈开销。如果信道具有可以用于量化的结构,前者可以有效地解决;例如,在毫米波频段中,通道通常被假定为稀疏的,这允许通过稀疏分解[12]–[14]实现高效的参数化CSI量化。然而,这些技术在独立同分布的瑞利衰落情况下不适用。此外,最近已经提出了一些利用深度神经网络(DNNs)实现高效CSI量化的方法[15]–[17];然而,这些发表的论文大多考虑相对低分辨率的量化,因为对于大的量化码本,神经网络很难训练。当信道具有时间相关性时,具有记忆的量化器(如差分量化器或基于循环神经网络的技术)可以提供比无记忆方法显着更好的性能[18]–[25]。然而,它们大多需要在线调整量化码本或在线神经网络学习,这在复杂性上可能是禁锢的。
贡献:在[26]中,我们提出了一种递归多阶段量化方法,可以将中大型MIMO系统中高分辨率Grassmannian量化的复杂度降低数个数量级。在本文中,我们展示了这种方法可以通过DNN分类有效增强,以进一步降低实现复杂度,从而支持低复杂度的高分辨率Grassmannian量化。因此,我们建议通过神经网络特征增强众所周知的基于模型的CSI量化器,而不是采用端到端的DNN方法。此外,我们还提出了一种简单的方法,通过有选择地更新量化器的各个阶段,利用递归多阶段量化中的时间信道相关性。
📚2 运行结果
部分代码:
Nt = 4; % number of transmit antennas (n)
Nr = 2; % number of receive antennas (m)
CB_size = 2^6; % quantization codebook size
d_vec = Nt:-1:Nr;
train_network = false; % trained DNNs are already included for this setup; if you change the setup, you have to retrain
if train_network % activate this if the DNN has to be trained
for di = 1:length(d_vec)-1 % DNNs for the individual stages of the quantizer
disp(di);
nTX = d_vec(di);
nRX = Nr;
NN_training; % generate training data
train_net; % train the network
end
end
time_corr; % apply the quantizer for quantization of a time-correlated channel
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]S Schwarz,基于深度学习分类的时相关MIMO信道的递归CSI量化,2020.