基于和谐搜索算法的中心位置分配优化问题研究(Matlab代码实现)

  💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

"基于和谐搜索算法的中心位置分配优化问题研究" 这个表述是指利用和谐搜索算法(Harmony Search Algorithm, HSA)来解决中心位置分配优化问题(Hub Location Allocation Problem, HLAP)。和谐搜索算法是一种启发式优化方法,灵感来源于音乐创作过程中寻求和谐音符的过程,通过模拟音乐演奏者对乐器调音的探索过程来进行优化搜索。中心位置分配问题则是物流、供应链管理和网络设计等领域中的一个重要问题,旨在确定最优的中心节点(如仓库、配送中心)布局,以最小化运输成本、提高服务效率或满足其他特定目标。

研究这一问题通常涉及以下几个方面:

  1. 问题定义:明确中心位置分配的具体目标,比如最小化总运输成本、最大化覆盖范围、平衡各中心的工作负载等。
  2. 模型建立:构建数学模型来描述中心与需求点(或节点)之间的关系,包括距离成本、固定运营成本、容量限制等因素。
  3. 算法设计:根据和谐搜索算法的基本原理,设计适应中心位置分配问题的算法结构,包括初始化、harmony产生、harmony记忆考虑、新解的生成规则以及终止条件等。
  4. 算法实现与优化:编程实现该算法,并通过参数调整、变异策略等手段优化算法性能。
  5. 案例分析与结果验证:选取实际或仿真的案例,应用所提出的算法求解,并与已有算法或解决方案进行对比,验证算法的有效性和优越性。
  6. 灵敏度分析与讨论:研究关键参数变化对优化结果的影响,讨论算法在不同情景下的适应性和局限性。

总的来说,这项研究工作旨在探索和展示和谐搜索算法在解决复杂网络设计中中心位置优化配置问题的能力和效率,为物流与供应链管理提供新的优化工具和思路。

📚2 运行结果

部分代码:

%% Variables

model=SelectModel();                        % Select Model
CostFunction=@(xhat) MyCost(xhat,model);    % Cost Function
VarSize=[model.N model.N];      % Decision Variables Matrix Size
nVar=prod(VarSize);             % Number of Decision Variables
VarMin=0;          % Lower Bound of Decision Variables
VarMax=1;          % Upper Bound of Decision Variables

%% Harmony Search 
MaxIt = 300;     % Maximum Number of Iterations
HMS = 60;         % Harmony Memory Size

nNew = 20;        % Number of New Harmonies
HMCR = 0.9;       % Harmony Memory Consideration Rate
PAR = 0.1;        % Pitch Adjustment Rate
FW = 0.02*(VarMax-VarMin);    % Fret Width (Bandwidth)
FW_damp = 0.995;              % Fret Width Damp Ratio

%% Initial

% Empty Harmony Structure
empty_harmony.Position = [];
empty_harmony.Cost = [];
empty_harmony.Sol = [];
% Initialize Harmony Memory
HM = repmat(empty_harmony, HMS, 1);
% Create Initial Harmonies
for i = 1:HMS
HM(i).Position = unifrnd(VarMin, VarMax, VarSize);
[HM(i).Cost HM(i).Sol]= CostFunction(HM(i).Position);
end
% Sort Harmony Memory
[~, SortOrder] = sort([HM.Cost]);
HM = HM(SortOrder);
% Update Best Solution Ever Found
BestSol = HM(1);
% Array to Hold Best Cost Values
BestCost = zeros(MaxIt, 1);

%% Harmony Search Body

for it = 1:MaxIt
% Initialize Array for New Harmonies
NEW = repmat(empty_harmony, nNew, 1);

% Create New Harmonies
for k = 1:nNew
% Create New Harmony Position
NEW(k).Position = unifrnd(VarMin, VarMax, VarSize);
for j = 1:nVar
    if rand <= HMCR
        % Use Harmony Memory
        i = randi([1 HMS]);
        NEW(k).Position(j) = HM(i).Position(j);
    end
    % Pitch Adjustment
    if rand <= PAR
        %DELTA = FW*unifrnd(-1, +1);    % Uniform
        DELTA = FW*randn();            % Gaussian (Normal) 
        NEW(k).Position(j) = NEW(k).Position(j)+DELTA;
    end
end
% Apply Variable Limits
NEW(k).Position = max(NEW(k).Position, VarMin);
NEW(k).Position = min(NEW(k).Position, VarMax);
% Evaluation

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]李琳.基于人水和谐的水资源多目标优化配置研究[D].河北农业大学,2015.

[2]张丹,张翔宇,刘姝芳,等.基于和谐目标优化的区域水权分配研究[J].节水灌溉, 2021(6):69-73.

🌈4 Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值