目录
💥1概述
快速有效的恢复是提高配电系统恢复能力的关键步骤[1]。随着分布式发电机(dg)的日益普及,分布式发电机的故意孤岛被认为是提高电力系统恢复能力的有效措施,可以在组件断电后提供临界负荷。具体而言,[2]-[3]提出了启发式和穷举搜索算法来寻找最优岛屿。由于启发式或穷举搜索方法不能保证全局最优解,因此在[4]中采用混合整数线性规划,提出了一种微网组建方案,假设每个可控DG形成一个孤岛微网,在大故障后接管临界负荷。这一工作对分布式配电系统恢复具有一定的启发意义,但其实现需要的决策变量随着微电网数量的增加而增加,计算量的增加阻碍了其实用性。研究分布式能源接入弹性配电网模型在IEEE 33节点系统中的孤岛划分是一个重要的课题,它涉及到电力系统中分布式能源资源的接入和管理,以及弹性配电网的运行和控制。孤岛划分是指当配电网中发生故障或其他异常情况时,将整个系统划分为多个部分,以确保各个部分能够独立运行而不受故障影响。在分布式能源接入的情况下,孤岛划分需要考虑到分布式能源的接入点和负荷、配电设备的状态和配置、配电网拓扑等因素。对于IEEE 33节点系统,可以使用以下步骤进行孤岛划分模型的研究:1. 建立配电网拓扑模型:根据IEEE 33节点系统的拓扑结构,建立相应的拓扑模型,包括各节点的连接关系、变压器的位置和参数等。2. 考虑分布式能源接入:将分布式能源资源接入的位置和参数考虑到拓扑模型中,包括光伏发电系统、风力发电系统等。3. 确定故障情况:根据故障模型,确定故障的位置和类型,如配电线路断开、变压器故障等。4. 进行孤岛划分:根据故障情况,利用合适的算法和策略进行孤岛划分,将系统划分为多个独立的孤岛,以确保各孤岛内能够独立运行。5. 孤岛内部运行和控制:对于每个孤岛内部,进行相应的运行和控制策略,包括负荷调整、容量控制、电压控制等,以保证孤岛内电力系统的安全稳定运行。6. 孤岛恢复:当故障修复后,需要进行孤岛的恢复和系统的重连,确保整个配电网能够正常运行。在研究过程中,可以使用模拟软件进行仿真实验,评估不同场景下的孤岛划分效果,并通过算法优化和参数调整,提高孤岛划分的准确性和可靠性。此外,还要考虑电力系统中的安全问题,如过载、短路等,制定相应的保护措施,确保系统运行的稳定性和安全性。
一、研究背景与意义
随着分布式发电机(DG)的日益普及,分布式发电机的故意孤岛被认为是提高电力系统恢复能力的有效措施。孤岛运行可以在组件断电后提供临界负荷,从而提高配电系统的供电可靠性和稳定性。因此,对分布式能源接入弹性配电网的孤岛划分模型进行研究具有重要意义。
二、研究内容与方法
-
研究内容:
- 针对IEEE33节点配电系统,研究分布式能源接入后的孤岛划分模型。
- 分析孤岛划分的策略和方法,以确保孤岛区域内的负荷能够得到恢复供电,并提高供电可靠性。
- 考虑分布式能源的运行特性、负荷可控性、线路传输限额等约束条件,建立孤岛划分的数学模型。
-
研究方法:
- 采用混合整数线性规划(MILP)方法,将孤岛划分问题转化为数学优化问题。
- 通过Matlab编程实现模型的求解,并得出最优的孤岛划分方案。
三、模型建立与求解
-
模型建立:
- 定义节点和支路的数据,包括节点的位置、负荷大小以及支路的电阻和电抗等参数。
- 引入“虚拟节点”和“虚拟需求”的概念,以描述孤岛划分时的功率平衡和网络结构。
- 建立孤岛划分的数学模型,包括目标函数和约束条件。目标函数通常为负荷恢复总量最大化,约束条件包括潮流约束、DG出力约束、负荷可控性约束等。
-
模型求解:
- 使用Matlab编程实现模型的求解过程。
- 通过迭代计算,得出最优的孤岛划分方案,包括孤岛的个数、位置以及每个孤岛内的节点和支路。
四、研究结果与分析
-
研究结果:
- 得出IEEE33节点配电系统在分布式能源接入后的最优孤岛划分方案。
- 分析不同约束条件对孤岛划分结果的影响,如DG出力约束、负荷可控性约束等。
-
结果分析:
- 比较不同孤岛划分方案下的负荷恢复总量和供电可靠性。
- 分析孤岛划分对配电网电压、网损等性能指标的影响。
- 讨论孤岛划分的实际应用价值和局限性。
五、结论与展望
-
结论:
- 分布式能源接入弹性配电网后的孤岛划分模型研究具有重要意义,可以提高配电系统的供电可靠性和稳定性。
- 通过混合整数线性规划方法和Matlab编程实现,可以得出最优的孤岛划分方案。
-
展望:
- 未来的研究可以进一步考虑无功潮流分布及电压约束对孤岛划分的影响。
- 可以探索更高效的求解算法和更复杂的配电网结构下的孤岛划分问题。
📚2运行结果
数据:
clc;
%----------------------节点数据-------------------------------
Bus=[ 1, 0, 0 ;
2, 100, 60 ;
3, 90, 40 ;
4, 120, 80 ;
5, 60, 30 ;
6, 60, 20 ;
7, 200, 100 ;
8, 200, 100 ;
9, 60, 20 ;
10, 60, 20 ;
11, 45, 30 ;
12, 60, 35 ;
13, 60, 35 ;
14, 120, 80 ;
15, 60, 10 ;
16, 60, 20 ;
17, 60, 20 ;
18, 90, 40 ;
19, 90, 40 ;
20, 90, 40 ;
21, 90, 40 ;
22, 90, 40 ;
23, 90, 40 ;
24, 420, 200 ;
25, 420, 200 ;
26, 60, 25 ;
27, 60, 25 ;
28, 60, 20 ;
29, 120, 70 ;
30, 200, 600 ;
31, 150, 70 ;
32, 210, 100 ;
33, 60, 40 ;
];
%------------------------支路数据------------------------------
Branch=[1 ,1 ,2 ,0.0922,0.0470;
2 ,2 ,3 ,0.4930,0.2511;
3 ,3 ,4 ,0.3660,0.1864;
4 ,4 ,5 ,0.3811,0.1941;
5 ,5 ,6 ,0.8190,0.7070;
6 ,6 ,7 ,0.1872,0.6188;
7 ,7 ,8 ,0.7144,0.2351;
8 ,8 ,9 ,1.0300,0.7400;
9 ,9 ,10,1.0440,0.7400;
10,10,11,0.1966,0.065;
11,11,12,0.3744,0.1238;
12,12,13,1.4680,1.1550;
13,13,14,0.5416,0.7129;
14,14,15,0.5910,0.5260;
15,15,16,0.7463,0.5450;
16,16,17,1.2890,1.7210;
17,17,18,0.7320,0.5740;
18,2, 19,0.1640,0.1565;
19,19,20,1.5042,1.3554;
20,20,21,0.4095,0.4784;
21,21,22,0.7089,0.9373;
22,3, 23,0.4512,0.3083;
23,23,24,0.8980,0.7091;
24,24,25,0.8960,0.7011;
25,6, 26,0.2030,0.1034;
26,26,27,0.2842,0.1447;
27,27,28,1.0590,0.9337;
28,28,29,0.8042,0.7006;
29,29,30,0.5075,0.2585;
30,30,31,0.9744,0.9630;
31,31,32,0.3105,0.3619;
32,32,33,0.3410,0.5302;
];
🎉3参考文献
部分理论来源于网络,如有侵权请联系删除。