💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
目录
💥1 概述
参考文献:
基于分时电价策略的家庭能量系统优化研究
目前,国内外学者针对基于家庭能量管理系统的家庭负荷优化调度问题从家居负荷分类、优化调度模型和求解算法等不同角度进行了研究。然而现阶段要实现家庭负荷的优化调度还存在诸多问题。分时电价或实时电价能反映电能商品的时间差价,可以更好地鼓励用户合理安排用电时间,但在分时电价或实时电价环境下家庭负荷的优化运行存在决策变量过多、调度模型复杂的问题。同时,随着光伏、风电等分布式发电系统和储能系统逐步接入家庭用户中,用户的用电结构向拥有自我调度能力的微电网方向转变。如何实现时变电价分布式发电系统和储能系统与家庭负荷的协调优化仍有待研究。文献综合考虑多类设备以及分布式新能源的协调,建立了多种电价机制下的家居设备优化运行决策模型。文献以减少用户的用电成本和减小配电网侧负荷波动为目标,建立了计及分布式电源、储能系统和可调度负荷的智慧社区能量管理系统模型。文献建立了基于模型预测控制的多时间尺度家庭能量管理模型,通过改变蓄电池充放电功率应对实时运行过程中不可调度负荷及光伏出力的波动,保证用户购电功率满足需求响应要求。
本文主要做的是家庭能量管理模型,首先构建了电动汽车、空调、热水器以及烘干机等若干家庭用户用电设备的能量管理模型,其次,考虑在分时电价、动态电价以及动态电价下休息日和工作日家庭用户的最优能量管理策略,依次通过CPLEX完成不同场景下居民用电策略的优化,适合新手学习以及在此基础上进行拓展。
一、分时电价策略的定义及国内外应用现状
分时电价(Time-of-Use Pricing, TOU)是一种需求侧管理手段,通过价格杠杆引导用户调整用电行为,实现电力系统削峰填谷。其核心是将一天划分为峰、平、谷三个时段,并分别设定差异化的电价:高峰时段电价最高,低谷时段最低,平段电价居中。这种机制通过反映不同时段的供电成本差异,鼓励用户在低电价时段集中用电,从而降低电网负荷波动,延缓电网投资,并提高能源利用效率。
国内外应用现状:
- 国外:分时电价在欧美、日本等地已广泛应用。例如,美国加州通过分时电价政策,高峰电价可达低谷时段的近三倍,推动家庭储能设备(如Tesla Powerwall)与光伏系统结合,显著降低电费。
- 国内:自2021年《关于进一步完善分时电价机制的通知》发布后,全国各省份已普遍建立分时电价机制,覆盖大工业和一般工商业用户。峰谷电价浮动比例多在50%-80%,尖峰/深谷电价进一步拉大。部分地区还引入季节性电价(如夏季与非夏季差异),以应对负荷的季节性波动。
二、家庭能量系统的构成与关键技术
家庭能量系统(Household Energy System, HES)是实现分时电价优化的物理基础,其核心组件包括:
- 可再生能源发电设备:如太阳能电池板、小型风力发电机,用于自发电。
- 储能设备:以锂铁磷酸盐电池(LiFePO4)为主,用于储存过剩电能,供高峰时段使用。
- 智能电表与监控系统:实时监测用电数据,并与电网交互。
- 逆变器与分电盘:转换直流电为交流电,并分配电力至不同电器。
- 智能家居能源管理系统(HEMS) :通过人工智能算法协调能源生产、储存与消费,优化用电计划。
关键技术:
- 能源预测:基于气象数据预测光伏/风力发电量,结合用户历史数据预测用电需求。
- 动态调度算法:如粒子群优化(PSO)、遗传算法(NSGA-II)等,用于多目标优化(成本最小化、舒适度最大化)。
- 用户交互界面:通过手机APP实现远程控制与实时数据可视化。
三、分时电价对家庭能源系统的影响机制
分时电价通过经济激励与行为引导双重作用影响家庭能源系统运行:
- 经济激励:用户在高电价时段优先使用储能设备或自发电,降低购电成本。例如,优化后的系统可减少电费支出30%-55%。
- 负荷转移:将可调负荷(如洗衣机、电动汽车充电)转移至低谷时段,降低电网峰谷差。
- 促进新能源消纳:低谷时段低电价鼓励用户消纳过剩光伏/风电,减少弃光弃风现象。
- 储能设备利用率提升:通过电价差实现储能设备的充放电套利,延长电池寿命。
四、现有优化方法与技术
- 多目标优化模型:
- 目标函数:通常包括用电成本、用户舒适度、碳排放量追踪等。
- 约束条件:设备运行时间、储能电池容量、电网功率限制等。
- 典型算法:
- 改进粒子群算法:引入混沌理论或小生境技术,避免局部最优,提升收敛速度。
- NSGA-II算法:用于多目标优化,如在电动汽车充电调度中平衡电网负荷与用户成本。
- 模糊聚类与支持向量机:用于时段划分与用户行为预测。
- 集成技术:
- 车到户(V2H)技术:利用电动汽车电池作为临时储能,降低家庭购电成本16.7%。
- 热电联供系统:结合热泵与储能设备,优化冬季供暖与夏季制冷能耗。
五、典型案例及效果评估
- 双层优化调度案例(王辉等,2023):
- 策略:上层调整可调负荷时段,下层优化光伏与储能出力。
- 效果:用电成本降低53.64%,迭代23次后算法收敛。
- V2H与光伏集成案例(南澳大利亚大学,2024):
- 策略:在分时电价下动态调度电动汽车充放电与光伏储能。
- 效果:能源成本降低16.7%,峰谷差减少15.8%。
- 生命周期优化案例(Zaid A. Al Muala等,2024):
- 策略:应用PSO算法优化冬季与夏季能源调度。
- 效果:冬季成本降低28%,夏季降低17%,碳排放减少46%-59%。
六、用户行为模式与需求响应策略
- 用户分类:
- 顽固型:对电价敏感度低(如连续生产的工业企业)。
- 积极型:主动调整用电行为以节省成本(如灵活排产的家庭)。
- 从众型:在社区或政策引导下逐步改变用电习惯。
- 需求响应模型:
- 戴蒙德模型:考虑用户跨时段负荷分配的意愿差异。
- 弹性系数模型:通过价格弹性矩阵量化用户响应度。
- 策略设计:
- 动态分时电价:根据实时负荷调整电价,比固定电价更有效(峰谷差率降低10%-20%)。
- 激励机制:结合电价补贴或碳积分奖励,提高用户参与度。
七、挑战与未来方向
- 挑战:
- 新能源出力波动性:光伏/风电的间歇性可能加剧电价与发电成本的不匹配。
- 用户接受度差异:需兼顾经济性与舒适度,避免过度牺牲用户体验。
- 未来方向:
- 人工智能与区块链:实现更精准的预测与去中心化能源交易。
- 政策协同:扩大分时电价覆盖范围(如居民用户),推动上网侧电价联动。
八、结论
分时电价策略与家庭能量系统优化的结合,不仅降低了用户用电成本,还提升了电网稳定性和可再生能源利用率。通过智能算法、储能技术及用户行为引导的多维度优化,家庭能源系统正逐步向经济、环保、高弹性的方向发展。未来,随着技术进步与政策完善,家庭能源管理将成为实现“双碳”目标的重要抓手。
📚2 运行结果
部分代码:
%热水壶约束条件
C = [C,sum(shui_hu) == 1,sum(shui_hu(1,15:34)) == 1];
C = [C,sum(y_tj) == 1,sum(y_tj(1,15:34)) == 1];
for i = 1:n
shui_hu(1,i) = y_tj(1,i);
end
%洗碗机约束条件
C = [C,sum(xi_wan) == 2,sum(xi_wan(1,13:24)) == 2];
C = [C,sum(y_dwm) == 1,sum(y_dwm(1,13:23)) == 1];
xi_wan(1,1) = 0;
for i = 2:n
xi_wan(1,i) = y_dwm(1,i-1) + y_dwm(1,i);
end
%消毒柜约束条件
C = [C,sum(xiao_du) == 1,sum(xiao_du(1,11:34)) == 1];
C = [C,sum(y_dfc) == 1,sum(y_dfc(1,11:34)) == 1];
for i = 1:n
xiao_du(1,i) = y_dfc(1,i);
end
%烘干机约束条件
C = [C,sum(hong_gan) == 2,sum(hong_gan(1,17:34)) == 2];
C = [C,sum(y_dy) == 1,sum(y_dy(1,17:33)) == 1];
hong_gan(1,1) = 0;
for i = 2:n
hong_gan(1,i) = y_dy(1,i-1) + y_dy(1,i);
end
%电动汽车约束条件
C = [C,sum(qi_he) == 6,sum(qi_he(1,9:32)) == 6];
%电脑约束条件
for i = 1:n
C = [C,0<=dian_nao(1,i)<=2];
end
C = [C,12 <= sum(dian_nao) <= 24,12 <= sum(dian_nao(1,9:20)) <= 24];
%空调约束条件
for i = 1:n
C = [C,25<=kong_tiao(1,i)<=27];
if i == 1
C = [C,abs(((kong_tiao(1,i)-27*exp(-0.5/(0.57*6)))/(1-exp(-0.5/(0.57*6)))-Tem_Out(1,i))/(2.9*6))<=2];
else
C = [C,abs(((kong_tiao(1,i)-kong_tiao(1,i-1)*exp(-0.5/(0.57*6)))/(1-exp(-0.5/(0.57*6)))-Tem_Out(1,i))/(2.9*6))<=2];
end
end
🎉3 参考文献
[1]伍惠铖,王淳,左远龙,陈宇杰,刘宽.基于分时电价和蓄电池实时控制策略的家庭能量系统优化[J].电力系统保护与控制,2019,47(19):23-30.DOI:10.19783/j.cnki.pspc.181396.