基于多能互补的热电联供型微网优化运行(Matlab代码实现)

 👨‍🎓个人主页

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

基于多能互补的热电联供型微网优化运行研究

CHP-MG 系统供给侧多能互补模型

一、多能互补的定义与基本原理

二、热电联供型微网(CHP-MG)的基本架构

三、多能互补与CHP-MG的技术结合路径

四、优化目标与关键算法

五、储能系统配置与容量优化

六、典型案例分析

七、外部电网交互的影响机制

八、未来挑战与研究趋势

九、结论

📚2 运行结果

2.1 不考虑热负荷响应

2.2 用户侧只参与电负荷的削减和时移响应

 2.3 用户侧只参与热负荷的供能选择响应

 2.4 用户侧参与电负荷的削减和时移响应以及热负荷的供能选择响应

🎉3 参考文献

 🌈4 Matlab代码+数据+文章讲解


💥1 概述

文献来源:

基于多能互补的热电联供型微网优化运行研究

 摘要:热电联供型微网(CHP-MG)对实现能源可持续发展和构建绿色低碳社会具有重要的应用价值,而内部复杂的能源结构与设备耦合关系,也对其运行优化带来了挑战。利用供需双侧电、热能的互动互补关系,在供给侧采用储能装置实现联供设备的热电解耦,通过各能源转换设备提升系统多能源的供应能力。在需求侧对负荷类型进行分类,利用电负荷的弹性和系统供热方式的多样性,构建含电负荷时移、削减响应及热负荷供能方式响应的综

合能源需求响应模型,并提出响应补偿机制。在此基础上,以系统运行成本与响应补偿成本之和最小为目标,综合考虑供需双侧设备运行和可调度负荷资源约束,建立基于多能互补的 CHP-MG 优化运行数学模型。基于算例的仿真结果和对比分析表明:考虑多能互补的供需双侧协同优化能有效提高系统供能的灵活性以及运行经济性。

关键词:热电联供型微网;热电解耦;综合能源需求响应;多能互补 

CHP-MG 系统供给侧多能互补模型

本文主要研究包含热、电、气 3 种能源形式的CHP-MG 系统优化运行,系统微源设备主要有风力

发电、微型燃气轮机(Micro Turbine, MT)、燃气锅炉(Gas Boiler, GB);储能设备(Energy Storage system,ESS) 包含蓄电池 (Battery, BT) 和蓄热槽 (Thermal Storage Tank, TST);能源转换设备包括热交换机(Heat Exchange, HE)、电热设备等,其结构如图 1所示,此系统与外部大电网和储能系统之间均存在双向功率流动。

一、多能互补的定义与基本原理

多能互补是指通过协调不同能源(如化石能源、可再生能源、储能系统)的特性和优势,构建集成化能源系统,实现能源的高效利用和互补优化。其核心在于:

  1. 能源协同:通过电、热、气等多能流耦合,弥补单一能源的间歇性或稳定性不足。
  2. 梯级利用:例如燃气轮机发电后的余热用于供热,实现能源品质的逐级匹配。
  3. 动态平衡:利用储能设备和灵活负荷调节供需瞬时波动。

历史背景:多能互补理念起源于20世纪80年代中国农村能源问题,早期以沼气、小水电互补为主。随着可再生能源占比提升,逐渐发展为涵盖风光储、热电解耦的复杂系统。


二、热电联供型微网(CHP-MG)的基本架构

典型CHP-MG由以下核心组件构成:

  • 能源供给侧
    • 发电单元:微型燃气轮机(MT)、光伏(PV)、风电(WT)等。
    • 热源:余热锅炉(WHB)、电锅炉(EB)、地源热泵等。
  • 储能系统
    • 电储能(ESS) :锂电池、氢储能。
    • 热储能(TES) :相变储热、热水储罐。
  • 负荷侧
    • 可调负荷:分时电价下的电负荷时移、热负荷供能方式切换(如优先使用余热或电制热)。
  • 控制中心:实现电-热功率平衡与多能流优化调度。

功能特点

  • 热电耦合:通过MT实现“以热定电”或“以电定热”,需结合储热设备解耦。
  • 多时间尺度响应:光伏/风电的秒级波动需ESS平抑,热负荷可小时级调节。


三、多能互补与CHP-MG的技术结合路径
  1. 供给侧互补
    • 风光储协同:利用光伏与风电的出力时序差异,通过ESS平抑波动。
    • 热电解耦:引入储热罐(如相变材料)打破MT热电耦合约束,提升运行灵活性。
  2. 需求侧响应(IDSR)
    • 电负荷弹性:通过分时电价引导负荷时移,降低峰谷差。
    • 热负荷多样性:支持余热、电制热、储热等多路径供能。
  3. 动态建模方法
    • 能源枢纽模型(EH) :以矩阵形式描述电、热、气转换关系。
    • 统一能路模型:整合电力、热力网络的动态特性,解决多时间尺度协调问题。

四、优化目标与关键算法
  1. 典型优化目标

    • 经济性:最小化购电成本、燃料费用及设备维护成本。
    • 环保性:引入碳交易机制,量化CO₂排放成本。
    • 可靠性:通过储能配置降低负荷失电率。
  2. 优化算法

    • 混合整数线性规划(MILP) :处理设备启停(0-1变量)与连续功率变量的混合问题。
    • 多目标优化:采用权重分析法或Pareto前沿法平衡经济与环保目标。
    • 智能算法:如改进粒子群算法(PSO)应对非凸、非线性约束。

五、储能系统配置与容量优化
  1. 配置策略
    • 双层优化模型:外层规划储能容量,内层优化运行策略。
    • 全寿命周期成本:考虑初始投资、维护损耗与回收年限。
  2. 容量优化方法
    • 动态定价模型:结合需求响应调整储能充放电策略。
    • 混合储能系统:如电池-氢储能组合,兼顾短时调频与长期能量转移。

六、典型案例分析
  1. 工业园区应用
    • 海宁风光氢储充项目:集成5.9MW光伏、储氢与燃气三联供,实现“自发自用+余电上网”。
    • 河北嘉寓科技园:通过相变储热与数字化管控,实现冷、热、电、蒸汽四联供。
  2. 社区微网
    • 佛山丹青苑社区:全国首个氢燃料电池热电联供社区,可再生能源利用率提升8.37%。

七、外部电网交互的影响机制
  1. 购电策略优化
    • 分时电价响应:低谷时段购电充电,高峰时段放电或售电。
  2. 功率交换约束
    • 联络线容量限制:避免过载并降低电网依赖性。
  3. 碳约束影响
    • 阶梯碳价模型:高排放时段购电成本增加,推动微网优先使用可再生能源。

八、未来挑战与研究趋势
  1. 不确定性建模
    • 风光出力与负荷预测误差:需融合鲁棒优化与机会约束规划。
  2. 多能流耦合深化
    • 电-氢-热协同:探索氢储能的长周期调节潜力。
  3. 人工智能融合
    • 强化学习(RL) :用于实时调度与复杂场景自适应。

九、结论

多能互补型CHP-MG通过供给侧多能协同、需求侧弹性响应及储能动态配置,显著提升了能源利用效率与经济性。未来需进一步突破多时间尺度优化、跨能源网络耦合及智能算法融合等关键技术,以支撑高比例可再生能源微网的可靠运行。

📚2 运行结果

2.1 不考虑热负荷响应

热电联产运行,利用 ESS 解耦热电联系,优化系统供给侧设备出力。

 

2.2 用户侧只参与电负荷的削减和时移响应

热电联产运行,利用 ESS 解耦热电联系,用户侧只参与电负荷的削减和时移响应,优化

系统供给侧设备出力。

 

 

 2.3 用户侧只参与热负荷的供能选择响应

热电联产运行,利用ESS 解耦热电联系,用户侧只参与热负荷的供能选择响应,优化系

统供给侧设备出力。

 

 2.4 用户侧参与电负荷的削减和时移响应以及热负荷的供能选择响应

热电联产运行,利用 ESS 解耦热电联系,用户侧参与电负荷的削减和时移响应以及热负

荷的供能选择响应,优化系统供给侧设备出力。

 

几种运行方案下 CHP-MG 运行情况如表 1 所示。在方案 1 下,电能和热能独立运行,电能主要由外部大电网以及发电设备满足,热能主要由 GB满足,MT 的余热未能有效利用,且 GB 的燃料费用较高,因此,该方案下运行成本较高为 8 000.5 元;方案 2 在方案 1 的基础上,在供给侧通过能源转换设备提升系统多能源的供应能力,使热能由 GB、HE 以及电热设备满足,因此,交换费用和锅炉费用有所降低,其经济运行成本为 7 712.3 元;方案 3在方案 2 的基础上,将需求侧管理纳入系统经济运行,在峰时段调节可控负荷和时移负荷用电功率,使系统购电费用降低,其系统总运行成本减少至7 660.8 元;方案 4 在方案 2 的基础上,利用负荷之间互补特性使用户进行替换式的需求响应,降低峰时段购电功率,但锅炉费用有所上升,其总运行成本为 7 651.1 元;方案 5 综合两种需求响应方式,相比方案 3 和 4,锅炉费用增加,但峰时段购电功率有所降低,其总运行费用得到优化为 7 609.6 元。

 经过优化后各方案的电负荷如图 2 所示,相较原电负荷,方案 3、4、5 在高峰时段总的电负荷得到有效降低,且通过方案 4 可以了解,基于负荷之间的互补特性,挖掘用户响应潜力,并不会给其余时段的系统运行造成太大影响。

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]程杉,魏昭彬,黄天力,何畅,赵孟雨.基于多能互补的热电联供型微网优化运行[J].电力系统保护与控制,2020,48(11):160-168.DOI:10.19783/j.cnki.pspc.190932. 

 🌈4 Matlab代码+数据+文章讲解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值