基于总变差(TV)的图像去模糊,使用总变差正则化进行图像去模糊研究(Matlab代码实现)

    💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

基于总变差(TV)的图像去模糊研究

一、引言

二、总变差正则化简介

三、基于总变差正则化的图像去模糊模型

四、求解方法

五、实验结果与分析

六、挑战与展望

七、结论

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于总变差(TV)的图像去模糊研究

一、引言

图像去模糊是图像处理领域中的一项关键任务,它旨在恢复因各种原因(如运动、焦距失准等)造成模糊的图像。基于总变差(Total Variation, TV)正则化的图像去模糊方法因其能够有效保留图像边缘和细节信息,减少去模糊过程中的模糊效应,而受到广泛关注。本文将对基于总变差正则化的图像去模糊方法进行深入研究。

二、总变差正则化简介

总变差正则化是一种数学优化方法,最初由L.I. Rudin和S. Fatemi在1992年提出,用于图像去噪。其基本思想是将图像恢复问题转化为一个能量最小化问题,其中不仅包含了数据拟合项(即观测到的模糊图像与去模糊后图像之间的误差),还包含了一个正则项——总变差(TV)。

总变差定义:在一维情况下,总变差衡量的是信号值变化的绝对大小之和。推广到二维图像上,总变差可以看作是图像在空间域上梯度模的积分,反映了图像灰度变化的剧烈程度。对于一幅图像f(x,y),其各向同性的总变差定义为:

TV(f)=∫Ω|∇f(x,y)|dxdy

其中,Ω是图像的定义域,∇f(x,y)是图像f(x,y)的梯度。

三、基于总变差正则化的图像去模糊模型

经典的基于总变差正则化的去模糊模型可以通过求解以下优化问题来实现:

minu{12∥Ku−f∥22+λTV(u)}

其中,u是待恢复的图像,f是模糊的观测图像,K是模糊核(或卷积算子),它描述了模糊的方式,λ是正则化参数,控制数据保真项与总变差正则化项之间的平衡。

四、求解方法

交替方向乘子法(ADMM)是一种有效求解上述优化问题的方法。其流程可以概括如下:

  1. 初始化:初始化图像u、辅助变量v和拉格朗日乘子η。

  2. 交替更新

    • 更新u:uk+1=argminu{12∥Ku−f∥22+ρ2∥u−vk+ηkρ∥22}
    • 更新v:vk+1=argminv{λTV(v)+ρ2∥uk+1−v+ηkρ∥22}
    • 更新拉格朗日乘子η:ηk+1=ηk+ρ(uk+1−vk+1)
  3. 迭代更新u、v和η,直到收敛。

  4. 输出去模糊后的图像

五、实验结果与分析

通过实验,我们可以验证基于总变差正则化的图像去模糊方法的有效性。以下是一些实验结果:

  1. 实验设置:选取一幅模糊的图像作为测试对象,设置不同的正则化参数λ和迭代次数,观察去模糊效果的变化。
  2. 实验结果:随着正则化参数λ的增大,去模糊效果逐渐增强,但图像的边缘细节也会逐渐丢失。随着迭代次数的增加,去模糊效果逐渐趋于稳定。
  3. 结果分析:基于总变差正则化的图像去模糊方法能够有效去除图像中的模糊效应,同时保留图像的边缘和细节信息。然而,正则化参数λ的选择对结果影响较大,需要根据具体情况进行调整。
六、挑战与展望

尽管基于总变差正则化的图像去模糊方法已经取得了显著的研究成果,但仍存在一些挑战:

  1. 计算复杂度:该方法的计算复杂度相对较高,尤其是在处理大尺寸图像时。因此,如何降低计算复杂度是未来的一个研究方向。
  2. 参数选择:正则化参数λ的选择对结果影响较大,需要根据具体情况进行调整。如何自动选择最优的正则化参数是一个亟待解决的问题。
  3. 高度非结构化模糊:对于高度非结构化的模糊或严重损坏的图像,该方法的去模糊效果可能受限。因此,如何改进算法以处理这类图像是未来的另一个研究方向。
七、结论

基于总变差的图像去模糊方法因其在保持图像边缘清晰度方面的良好表现,成为图像复原领域的一个重要研究方向。通过不断优化算法和参数调整策略,该方法的应用范围和效率有望进一步提升。未来,我们将继续深入研究该方法,并探索其在其他图像处理任务中的应用潜力。

📚2 运行结果

部分代码:

% Experience (numero) from paper
% Change here!!!!
numero=1;

% images
img1='cameraman.tif';
img3='lena_256.gif';


if numero==1
    h=ones(9)/81;
    sigma=0.56;
    img=double(imread(img1));
elseif(numero==2)
    h=ones(9)/81;
    sigma=0.4;
    img=255*phantom(256);
    
elseif(numero==3)
    h=[1 4 6 4 1]'*[1 4 6 4 1]/256;
    sigma=7;
    img=double(imread(img3));
elseif(numero==5)

end


% % zero noise image (not necessary)
img=img-mean(img(:));

% Blured noisy image
img_noisy=conv2c(img,h)+sigma*randn(size(img));


img_estimated=tvmm_a(img_noisy,h,'info_energyo','no','image',img, ...
    'cg_iter',200,'boa_iter',10,'info_ISNRo','yes','info_ISNRi','no','displayIm','yes');

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]翟艳,潘振宽,魏伟波.基于法矢量雅可比的总广义变差图像修复模型[J].计算机仿真, 2022(003):039.

[2]杨夏芳.自适应加权全变差和非局部正则模型在图像重建中的应用[D].西安电子科技大学,2013.

[3]陈小莉.基于交替乘子法的图像去模糊技术研究[J].电子设计工程, 2019, 27(5):5.DOI:CNKI:SUN:GWDZ.0.2019-05-042. 

🌈4 Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值