知识蒸馏:如何让小模型继承大模型的智慧,提升效率不牺牲效果

我们今天给大家分享一篇知识蒸馏的工作。

我们知道,现如今模型各种各样,效果方面屡创新高。但是,有的时候,效果提升会有效率的牺牲。那么知识蒸馏,就是能够让保证效果的同时,提升效率。这篇文章将给大家来介绍一篇知识蒸馏相关的知识。

原工作链接:https://arxiv.org/pdf/1503.02531

image.png

谷歌的三位大佬所著。

一、研究背景:模型训练与部署的矛盾困境

在机器学习的实际应用中,训练模型和部署模型就像两个性格迥异的 “小伙伴”,有着不同的需求。训练模型的时候,我们希望它能从大量数据里 “挖” 出有用的信息,哪怕计算量再大、耗时再久也没关系,就像一个耐心的矿工,慢慢挖掘宝藏。比如在语音识别和物体识别这些任务里,训练模型要处理海量、高度冗余的数据集,从中提取出关键的特征和规律。

但是,当模型训练好要部署到实际场景中时,情况就大不一样了。这时候,对模型的延迟和计算资源的要求变得非常严格。想象一下,你用手机语音搜索的时候,如果模型响应很慢,或者特别耗电,你肯定会觉得体验很差。所以,部署的模型需要能快速给出结果,还不能占用太多资源。

就像昆虫有幼虫和成虫两种形

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值