医学大数据|文献阅读|基于临床数据的食管癌动态生存预测模型的构建与应用

硕士研究生:杜坤朋

指导老师:郑燕芳教授/李纪强教授

学校:南方医科大学

文献获取链接:https://kns.cnki.net/kcms2/article/abstract?v=0m5erL8TawNc4q6OqaoefTn1rtshDMkTVKwvFJJykRlV7eHecJXM8feTQanUCs9miEFlNj1BU9mT21NghjVkJ4ctBawDISSkjyRvXdpslHnd5wUVzLk1nmrLHn

BQunKUHCz4wd5oBgizzAlDTfgGgQ==&uniplatform=NZKPT&language=CHS

仅供学习笔记,不做商业用途

目录

仅供学习笔记,不做商业用途

摘要

研究资料与方法

1.数据库选择与登录方式

2.患者纳入标准

3.患者排除标准

4.变量处理方式

5.结果与结果解读

(1)临床病理学特征

(2)具有时间固定效应的变量和具有时变效应的变量


摘要

背景:协变量的相对风险比可能会在随访期间发生变化,继而对患者的5年生存率产生动态的影响,这种效应称为“时变效应”。本文旨在探究食管癌患者中存在的具有时变效应的变量,并尝试构建一个动态预测模型,该模型可以计算随访期间不同预测时间点的5年动态生存概率。

数据来源:SEER数据库

协变量:年龄、婚姻状况、性别、种族、肿瘤原发部位、组织学类型、病理分级、T分期、N分期M 分期、是否手术、是否化疗、是否放疗。

研究方法:使用Kaplan-Meier 生存分析法找出食管癌患者的预后因素。使用 PBLS 模型(一种扩展COX模型)评 估 了 协变量的时变效应并构建了一个动态食管癌生存预测模型

外部验证:利用一个由 99 例食管癌患者构成的独立中国患者队列对预测模型进行外部验证。包括对区分度(Discrimination)和一致性(Calibration)的验证,评价模型的指标包括 C-index,AUC 以及 The heuristic shrinkage factor.

结果:Kaplan-Meier生存分析中,发病年龄、婚状态、种族、肿瘤发病部位、组织学类型、分化程度、放疗、手术、T 分期、N 分期、M 分期的不同分组之间的生存率均有统计学意义(P<0.01),性别、化疗的不同分组之间的生存率无统计学差异(P分别=0.803、0.058)。在食管癌患者各种预测变量中年龄、原发肿瘤部位、组织学类型、化疗、手术和T分期对总生存率展示出显著的时变效应。相反地,婚姻状况,种族,性别,分化程度,N分期和M分期表现出时间固定效应。

动态预测模型的外部验证结果:C-index=0.746:AUC=0.736,表明本预测模型具有较好的区分度。The heuristic shrinkage factor-0.996,表明模型具有较好的一致性。

结论:对于食管癌患者,年龄、原发肿瘤部位、组织学类型、化疗、手术和 T分期的相对风险比是会随时间改变而发生变化的,展示出显著的时变效应时变效应的存在表明了在随访期间更新5年生存概率的重要性。本研究首次使用动态预测分析中的PBLS模型对食管癌患者的不同时间点的5年生存率进行预测。这种新型的动态预测模型,可以随着时间的推移更新患者5年生存概率,可用于根据对患者预后的动态评估协助医生做出更好的个体化治疗决策,也可以用于增强患者信心、提高治疗依从性。

关键词:食管癌动态预测模型PBLS模型SEER数据库

研究资料与方法

1.数据库选择与登录方式

SEER 数据库是由美国癌症研究所组建、维护和更新的供医务工作者、科研人员开放使用的肿瘤登记注册数据库,提供有关肿瘤患者人口统计学、肿瘤部位、组织学、原发性肿瘤数量、癌症标志物、分期、治疗和生存状况等数据首先通过 SEER 数据库官网:www.seer.cancer.gov/seerstat,申请获得官方账号:10531-Nov2016,并获得 NCI的使用授权。之后下载 SEER 数据下载软件的客户端安装包(SEER*Stat8.3.5)。登录后在客户端中选择数据库:SurveillanceEpidemiology, and End Results (SEER)Program (www.seer.cancer.gov) SEER*StatDatabase: Incidence -SEER 18 Regs Custom Data (with additional treatment fields),Nov 2016 Sub(1973-2014 varying)-inked To County Attributes - Total U.S..1969-2015 Counties,National Cancer Institute, DCCPS, Surveillance ResearchProgram, released April 2017, based on the November 2016 submission.

2.患者纳入标准

①肿瘤原发部位(Site recode ICD-0-3/WHO 2008)明确且位于食管(Esophagus,C15)。②病理诊断为鳞状细胞癌(Histologic Type ICD-O-3:8050-8084)和腺癌(Histologic Type ICD-0-3:8140-8573)。在 SEER 数据库中我们抽取了在 2004年1月至2009年12月间经病理学、组织学诊断证实为食管癌的19340例患者。在自建数据库中我们抽取了在2010年1月至2014年12月间经病理诊断证实为食管癌的 99 例患者。

3.患者排除标准

我们进一步排除了①20 岁以下的患者=1);②婚姻状况被编码为“未知”的患者(N=852);③种族编码为“未知者”或“美洲印第安人/阿拉斯加原住民”者(N=127);④原发肿瘤部位不明者(N=2103),⑤组织学分级缺失者(N=2719);⑥I分期编码为“未知者”或“T0”者(=2688);⑦无特定 N 期和 M 期者(=745);⑧手术编号为 99(未知数)者(N=30),生存期未知月或2个月以下者(N=943),剩下 9132例患者作为入组病例进行生存研究。具体的筛选过程如图2-1所示。

4.变量处理方式


最后,我们对剩余的数据中的各个变量进行了定义、集成和分组。①我们将年龄分为5组:年龄<50岁,50<年龄<59岁,60<年龄<69岁,70<年龄<79岁80<年龄:②在诊断时分居、离婚或丧偶的患者被纳入未婚组,已婚(包括普通法婚姻)的患者分为已婚组,单身(从未结婚)的患者分为单身组;③肿瘤部位分为4组:食管上三分之一(C15.0,C15.3),食管中三分之一(C15.4),食管下三分之一(C15.2,C15.5),食管重叠病变(C15.8);④根据手术部位及手术方式,将患者分为手术组(代码:10-90)和未手术组(代码:0);(⑤根据患者接受放射治疗的情况,我们将患者分为放疗组和未放疗组/未知组。⑥根据接受化疗情况将患者分为化疗组和未化疗/未知组。本研究的主要研究结局是总体生存时间(Overalsurvival),它被定义为从病理诊断到死亡时间或最后一次记录的时间。来自 SEER的数据不需要额外的知情同意,患者的隐私信息受 SEER 癌症登记处的保护。为了验证这一动态预测模型,我们使用了2004年1月至2010年9月间广州某三甲医院的 99 名中国食管癌患者队列。所有病例的纳入和排除标准与 SEER数据库的筛选标准相同。这项回顾性临床研究获得了该医院伦理委员会的批准。

5.结果与结果解读

(1)临床病理学特征

共有 9132名来自 SEER数据库的食管癌患者被纳入分析。其中男性患者7226例(79.1%),女性1906(20.9%)。年龄<50岁的患者有695例(7.6%);在50-59岁之间的患者共1995 例(21.8%);发病年龄处于60-69 岁之间患者有2804例(30.7%);处于70-79岁之间的患者2435例(26.7%);年龄>80岁的患者有1203例(13.2%)。白种人7768例(85.1%),黄种人(亚洲人及太平洋群岛人)408例(4.5%),黑种人956例(10.5%)。处于婚状态者5585例(61.2%);未婚者1310例(14.3%);处于离异状态者 2237例(24.5%)。肿瘤部位为食管上三分之一段者 758例(8.3%);肿瘤位于食管中段者 1664 例(18.2%);肿瘤位于食管下三分之一段者6319例(69.2%);肿瘤位于食管重叠部位患者 391例(4.3%)。病理类型为食管鳞癌患者3028例(35.1%),病理类型为食管腺癌患 592例(64.9%)。肿瘤分化程度为高分化惠者550例(6.0%);分化程度为中分化患者4112例(45.0%);肿瘤为低分化/未分化的患者4470例(48.9%)。T1期患者有3294例(36.1%);T2期患者有1233 例(13.5%);T3期患者有3276例(35.9%);T4期患者有1329例(14.6%)。N0期患者有4522(49.5%);N1期患者有4610例(50.5%)。M0期患者有6853例(75.0%);M1期患者有2279例(25.0%)。接受手术治疗患者3632(39.8%);未接受手术患者5500(60.2%)。接受放射治疗患者5858(64.1%);未接受放疗/未知患者 3274例(35.9%)。接受化疗患6127例(67.1%);未接受化疗患者 3005例(32.9%)。截止随访终点仍存活患者1392例(15.2%);截止随访终点已死亡患者7740例(84.8%)。中位随访时间29.64个月(3-276个月),3年和5年生存率分别为27.3%和19.9%。总体生存率曲线如图3-1所示。

(2)具有时间固定效应的变量和具有时变效应的变量

预测模型中包含的协变量的 95%置信区间(95% Confidence interval)的回归系数和相对风险比(HR)在表 3-2中展示。图3-3展示了具有时间固定效应(Timeconstant effect)的变量和具有时变效应(Timevaryingefect)的变量的相对风险比(Hazard Ratio)随时间改变的变化趋势,两类变量随时间变化的趋势不同顾名思义“时变效应”即“随时间改变而发生相对风险比变化的效应”,具有这种效应的变量称为具有时变效应的变量。反之,随时间改变而相对危险比保持不变的变量称为具有时间固定效应的变量。在食管癌患者各种预测变量中,婚姻状况,种族,性别,级别,N分期,和M分期表现出时间固定效应(表2,图2)。即无论在随访期间的任何时间点,这些变量的相对危险比都是恒定不变的。例如,在刚诊断为食管癌时(time point=0),男性患者与女性患者的危险比为 1.201。在诊断后的6年内,HR 值仍保持在1.201,显示出显著的时间固定效应(图2D)。相反,年龄、原发肿瘤部位、组织学类型、化疗、手术和 AJCCT分期的相对风险比对患者5年动态生存率具有显著的时变效应。即他们的相对风险比在每一个的时间点是不断变化的(图3-3)。举个例子,确诊食管癌后未接受手术治疗的早期患者与接受手术治疗的患者(参照值)相比,HR为2.436,按以下公式计算(表 2):HR= constantx(time-varyingefrect)$p=2.436x0.2310-2.436但经过一年的随访期之后,相对风险比降至0.563(HR=2.436x0.2311= 0.563)。同样的,年龄、原发肿瘤部位、组织学类型、化疗和 AJCCT分期对5年的DOS也有显著的时变效应。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

久菜盒子工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值