以下内容,均在linux系统上进行。
下载OpenPCDet-master项目
配好环境之后,首先使用python setup.py develop 调用编译代码进行编译
训练
1.按照pcdet规定的格式放好kitti数据集
OpenPCDet
├── data
│ ├── kitti
│ │ │── ImageSets
│ │ │── training
│ │ │ ├──calib & velodyne & label_2 & image_2 & (optional: planes)
│ │ │── testing
│ │ │ ├──calib & velodyne & image_2
├── pcdet
├── tools
注:括号中的是可选数据,也就是说放不放都可以。optional: planes是点云的平面信息
1.1也就是说在项目中,找到data下的kitti文件夹,最开始里面只有一个imageSets,里面的数据是train,test,val三组数据的编号。
你会发现这些编号对应了完整的kitti数据集。当然,如果想只用一部分的kitti数据集训练,就把这里面的编号改成与数据对应的编号。
1.2至于training和testing文件夹,我们要自己创建
│ │ │── training
│ │ │