3D目标检测——使用OpenPCDet训练kitti数据集

本文详细指导如何在Linux系统上下载并配置OpenPCDet项目,包括数据集的准备、软连接的使用、生成数据集文件以及调用train.py进行训练,特别提到如何处理数据集重命名和输出文件夹的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

以下内容,均在linux系统上进行。

下载OpenPCDet-master项目

配好环境之后,首先使用python setup.py develop 调用编译代码进行编译

训练

1.按照pcdet规定的格式放好kitti数据集

OpenPCDet
├── data
│   ├── kitti
│   │   │── ImageSets
│   │   │── training
│   │   │   ├──calib & velodyne & label_2 & image_2 & (optional: planes)
│   │   │── testing
│   │   │   ├──calib & velodyne & image_2
├── pcdet
├── tools
 

注:括号中的是可选数据,也就是说放不放都可以。optional: planes是点云的平面信息

1.1也就是说在项目中,找到data下的kitti文件夹,最开始里面只有一个imageSets,里面的数据是train,test,val三组数据的编号。

你会发现这些编号对应了完整的kitti数据集。当然,如果想只用一部分的kitti数据集训练,就把这里面的编号改成与数据对应的编号。

1.2至于training和testing文件夹,我们要自己创建

│   │   │── training
│   │   │  

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值