有界,可积,存在原函数和连续的关系

目录

1.可积和有界的关系

2.连续和可积的关系

3.连续和存在原函数的关系

4.可积和存在原函数没有关系


1.可积和有界的关系

可积必有界,有界不一定可积,反例可以举狄利克雷函数

2.连续和可积的关系

f(x)连续,则一定可积,可积不一定连续

参考两种定义:

① 若f(x)在[a,b]上仅有有限个第一类间断点,则一定可积。

② 若f(x)在[a,b]上有界且只有有限个间断点,则一定可积。

如果参考第②条定义,那么若有第二类间断点也可能是可积的(不可能为无穷间断点)。但这里并没有找到合适的举例 

3.连续和存在原函数的关系

该知识点对应张宇30讲p138,也可以看下面的反例:

f(x)连续一定存在原函数,但是f(x)存在原函数不能推出f(x)连续,参考下面的举例,f(x)有振荡间断点,但是f(x)有原函数。

4.可积和存在原函数没有关系

(1)可积但不存在原函数

(2)存在原函数但不可积

(3)既不可积也不存在原函数

总结:

f(x)存在原函数和f(x)可积并没有关系,连续是最强的条件,f(x)连续则一定可积,f(x)连续则一定存在原函数。

注意与变上限积分区别:

变上限积分说的是,f(x)在[a,b]上可积,则f(x)的变上限积分在[a,b]连续。

我们知道,f(x)有有限个第一类间断点,那么f(x)是可积的(f(x)的定积分存在)。若函数含有第一类间断点,其变上限积分函数的可导性:

f(x)和F(x)的关系是什么:

① 若f(x)在x=x0处连续,那么

F'(x0)=f(x0)

② 若f(x)在x=x0处为可去间断点,那么

F(x)可导,不等于这一点f(x)的函数值,而是f(x)的极限值

③ 若f(x)在x=x0处为跳跃间断点,那么

F(x)连续(f(x)可积,F(x)就连续)但不可导,且:

F'{-}(x0)=f(x0^-)

F'{+}(x0)=f(x0^+)

所以变上限积分一定是f(x)的原函数这句话是错的,应该说,f(x)连续,则变上限积分一定是f(x)的原函数。(若f(x)某点是可去间断点,那么F(x)可导,但是并不等于这点的函数值)

我们可以总结这样一个规律,通俗一点讲:

f(x)做积分后,性质就变好了,例如:

f(x)在[a,b]上可积(不一定连续,可有有限个第一类间断点),那么F(x)在[a,b]上连续。

f(x)在[a,b]上连续,那么F(x)在[a,b]上可导。

f(x)求导性质就变差了,例如:

f(x)可导,但是f ‘ (x)都不一定连续。


对于易混淆的概念,我有一篇文章进行了总结,需要可以看看:

考研数学经典反例

  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值