作者:老余捞鱼
原创不易,转载请标明出处及原作者。
写在前面的话:
本文来自Plotinus Asset Management,介绍了一种创新的多智能体深度学习方法(Model A),该方法应用于基于美国S&P 500指数的期货市场交易。与长短期记忆网络(LSTM)、随机森林和梯度提升树等传统机器学习方法相比,Model A在历史测试中表现出色,其结果与持有期货合约的被动投资模型相比较,在多个关键绩效指标上实现了显著的超越。特别值得一提的是,Model A在只有41.95%的市场暴露的情况下,实现了比100%市场暴露的被动投资更高的盈利性,展示了其在减少风险的同时增加盈利的潜力。
一、概述
作者概述了机器学习在交易研究中的活跃地位,明确了预测未来价格的目标,并指出了金融变量的复杂性、模型参数的丰富性、市场波动的随机性以及变量非平稳性带来的困难。同时提到,尽管学术上某些模型可能成功,但它们经常忽略了在现实世界中迅速侵蚀利润的交易成本和价差问题。此外,还提到了基于数据的评估,显示了超过五年期间,有78.68%的美国大型股票基金表现不如S&P 500指数。
二、数据和方法
作者聚焦于华尔街交易日的交易数据,从开盘到收盘(美东时间09:30至16:00),这段时间虽然在交易量和心理影响上非常重要,但在过去二十年中,对于S&P 500期货的整体增长贡献仅占20.5%。这表明,相对于被动交易策略,主动交易方法可能在这一时段内提高收益。