Seurat常规聚类和SCTransform脚本汇总

Seurat常规聚类与SCTransform脚本汇总

前沿

单细胞常规分析用得最多的软件非R语言的Seurat包莫属,当然还有Python语言的Scanpy,但是对于入门者来说,R语言更容易上手,而且很多单细胞分析的扩展包也是基于Seurat的,或者很多R包的输入就是Seurat参数。
然而,对于数据量较大的情况,R语言就显得很鸡肋,不仅耗运行内存而且很慢,因此基于Python的软件包更为适合分析大数据,而且R语言能实现的Python基本上都能实现。随着单细胞组学的迅速发展,未来数据也将迎来超大量级的产出,基于Python的软件包应该更有前景。
言归正传,因为Seurat的常规聚类基本不变,本文主要把此流程封装成函数,这样之后调用起来都比较方便和简洁。

  • 常规流程版

下面的函数经过NormalizeData和ScaleData常规聚类步骤,还可以根据需求设置参数。

  • obj,Seurat对象
  • mt.pattern或mt.list,mt.pattern模糊匹配线粒体基因名,mt.list给定线粒体基因向量
  • dim.use,PCA主成分数目
  • mt.cutoff,线粒体百分比阈值
  • nf.low或nf.high,基因数下限或上下
  • nfeatures,选取高变基因数目
  • res,亚群分辨率
seob_cluster <- function(obj,
                         mt.pattern="^MT-",mt.list=NULL,dim.use=30,mt.cutoff=10,
                         nf.low=200,nf.high=6000,nfeatures=3000,
                         res=1) {
all <- obj
if (is.null(mt.list)) {
all[["percent.mt"]] <- PercentageFeat
### Seurat 聚类颜色设置与自定义方法 在生物信息学单细胞数据分析中,Seurat 是一款广泛应用于单细胞 RNA 测序 (scRNA-seq) 数据处理的强大工具。对于聚类结果的颜色表示,Seurat 提供了灵活的方式来进行定制化配置。 #### 自定义聚类颜色方案 为了实现对 Seurat 对象中各个簇的可视化效果调整,可以利用 `Idents` 函数来指定新的身份标签,并通过 `SetIdent` 或者直接修改元数据的方式来更改这些标签对应的显示色彩。具体来说: - 使用 `palette()` 来创建一组预设好的调色板; - 应用 `DimPlot` 绘制降维图时可通过参数 `group.by="ident"` `cols=your_palette_vector` 设置各组别的颜色; ```r library(Seurat) # 创建一个包含所需颜色向量的对象 custom_colors <- c("#FF0000", "#00FF00", "#0000FF") # 将新颜色应用到现有的 Seurat object 上 DefaultAssay(object) <- "RNA" object <- SetAllIdent(object, id = "seurat_clusters") # 如果之前已经设置了 cluster ID 可省略此步 options(repr.plot.width=8, repr.plot.height=6) p1 <- DimPlot(object, reduction = "umap", group.by = "seurat_clusters", cols = custom_colors, label=T)+ggtitle("Custom Cluster Colors UMAP Plot") print(p1) ``` 上述代码片段展示了如何为UMAP图表中的不同集群分配特定的颜色[^1]。 #### 解读颜色含义 当观察由 Seurat 产生的任何类型的散点分布图(如 t-SNE、PCA 或 UMAP),默认情况下每个点代表一个单独的单元格,而相同颜色则意味着属于同一个已识别群体内的成员。如果进行了手动注释,则可以根据先前建立的标准解释这些分类背后的生物学意义——比如某种特殊的免疫表型或是发育阶段等特征。此外,在某些场景下还可以借助外部数据库查询特异性标记基因表达情况进一步辅助理解所见模式背后的原因[^2]。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值