7.rk3588进行rknn的模型推理(c++)

### RK3588 平台上的 Qt 和 RKNN 开发 #### 一、环境准备 为了在 RK3588 上使用 Qt 进行 RKNN (Rockchip Neural Network) 的开发,需先安装必要的软件包和工具链。这包括但不限于 Rockpi SDK 工具链以及 Qt 库文件[^1]。 对于操作系统的选择上,建议采用官方支持的 Linux 发行版来确保兼容性和稳定性。完成基础设置之后,则要配置好交叉编译器以便于后续的应用程序编写工作。 #### 二、RKNN 模型转换与优化 模型转换是将训练好的神经网络模型转化为适合 RKNN 推理引擎使用的格式的过程。通常情况下,会利用 Python 脚本来实现这一目标: ```bash pip install rknn-toolkit2 ``` 通过上述命令可以安装 `rknn-toolkit2` ,这是一个用于处理 TensorFlow 或 ONNX 等多种框架导出模型RKNN 格式的工具集。接着按照具体需求调整参数并执行相应的 API 函数来进行量化操作或是其他形式的性能调优措施。 #### 三、Qt 集成 RKNN 实现图像分类案例分析 下面给出一段简单的 C++ 代码片段作为例子展示如何集成 Qt 及其图形界面组件同 RKNN 结合起来做图片识别任务: ```cpp #include <QApplication> #include <QWidget> #include <QPushButton> #include <QLabel> #include <QVBoxLayout> // 加载 RKNN 模型所需的头文件 extern "C" { #include "rknn_api.h" } class ImageClassifier : public QWidget { public: explicit ImageClassifier(QWidget *parent = nullptr); private slots: void classifyImage(); private: QLabel* m_label; }; ImageClassifier::ImageClassifier(QWidget *parent): QWidget(parent),m_label(new QLabel(this)){ QVBoxLayout *layout = new QVBoxLayout; QPushButton *button = new QPushButton(tr("Classify"), this); connect(button, SIGNAL(clicked()), SLOT(classifyImage())); layout->addWidget(m_label); layout->addWidget(button); setLayout(layout); // 初始化 RKNN 模型... } void ImageClassifier::classifyImage(){ /* 假设这里已经实现了读取输入图像数据到 input_data 中 */ const char* model_path="./mobilenet_v1.rknn"; int ret=0; rknn_context ctx; struct rknn_input_output_num io_num; ret=rknn_query(ctx,RKNN_QUERY_IN_OUT_NUM,&io_num,sizeof(io_num)); if(ret<0){ qDebug()<<"Failed to get IO number!"; return ; } float output[1000]; memset(output,0,sizeof(float)*1000); struct rknn_input inputs={}; inputs.index=0; inputs.type=RKNN_TENSOR_UINT8; inputs.size=input_size; inputs.fmt=RKNN_TENSOR_NHWC; memcpy(inputs.data,input_data,input_size); ret=rknn_inputs_set(ctx ,&inputs,1); if(ret!=0){ qDebug()<<"Set Input Failed!"; return ; } ret=rknn_run(ctx,NULL); if(ret!=0){ qDebug()<<"Run failed!"; return ; } struct rknn_output outputs={ .want_float=true, .is_prealloc=false, .index=0, .buf=output, .size=sizeof(float)*1000 }; ret=rknn_outputs_get(ctx , &outputs,1); if(ret!=0){ qDebug()<<"Get Output Failed!"; return ; } // 对输出结果进行解析... QString result="The image is classified as..."; m_label->setText(result); } int main(int argc,char **argv){ QApplication app(argc, argv); ImageClassifier w; w.show(); return app.exec(); } ``` 此段代码创建了一个基于 Qt Widgets 架构的小应用程序,在其中定义了一个按钮点击事件处理器函数 `classifyImage()` 来加载预训练过的 MobileNetV1 模型并对给定的测试样本做出预测。注意实际应用时还需要考虑更多细节比如内存管理等方面的问题。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值