结合以下链接中的文章有助于理解此篇案例:
- OpenCV中的 cnn 模块
此案例是通过使用OpenCV中的cnn模块来调用别人已经训练好的深度学习模型,此篇案例中用到了人脸检测模型、年龄预测模型,性别预测模型。
-
以下链接中是这三种模型所需要的模型文件和配置文件
- 链接: https://pan.baidu.com/s/1hzatG5CNVVULCA8TjEegag?pwd=iaeg
- 提取码: iaeg
-
完整代码如下:
import cv2 from PIL import Image, ImageDraw, ImageFont import numpy as np # ======模型初始化====== # 模型(网络模型/预训练模型):face/age/gender(脸、年龄、性别) faceProto = "model/opencv_face_detector.pbtxt" faceModel = "model/opencv_face_detector_uint8.pb" ageProto = "model/deploy_age.prototxt" ageModel = "model/age_net.caffemodel" genderProto = "model/deploy_gender.prototxt" genderModel = "model/gender_net.caffemodel" # 加载网络 ageNet = cv2.dnn.readNet(ageModel, ageProto) # 模型的权重参数、模型的配置 genderNet = cv2.dnn.readNet(genderModel, genderProto) faceNet = cv2.dnn.readNet(faceModel, faceProto) # ======年龄初始化====== # 年龄段和性别 共有8个年龄区间,区间范围可自行更改 ageList = ['0-2岁', '4-6岁', '8-12岁', '15-22岁', '25-32岁', '38-43岁', '48-53岁', '60-100岁'] genderList = ['男性', '女性'] mean = (78.4263377603, 87.7689143744