第36讲:作物生长预测中的时间序列建模(LSTM等)

目录

🧠 为什么用时间序列模型来预测作物生长?

⛓️ 什么是 LSTM?

📊 示例案例:预测小麦NDVI变化趋势

1️⃣ 模拟数据构建(或使用真实遥感数据)

2️⃣ 构建 LSTM 所需数据格式

3️⃣ 构建并训练 LSTM 模型

4️⃣ 模型预测与效果可视化

🧠 除了 LSTM,还有哪些方法?

🌾 农学中的潜在应用场景

✅ 小结


在精准农业快速发展的今天,如何准确预测作物的生长状态,已成为提升农业决策效率的重要课题。特别是面对多变的气候、不同地块的管理方式,传统的经验预测法早已力不从心。

因此,我们今天要介绍的主角是:

LSTM(Long Short-Term Memory)模型 —— 一种专门用于时间序列建模的深度学习技术


🧠 为什么用时间序列模型来预测作物生长?

作物的生长是一个典型的时间动态过程,受到诸如:

  • 温度、

  • 降水、

  • 土壤湿度、

  • 光照、

  • 施肥行为、

  • 历史 NDVI(归一化植被指数)值……

一系列随时间变化的因素影响
因此,我们需要用时间序列建模技术,来捕捉这些信息之间的动态依赖关系。


⛓️ 什么是 LSTM?

LSTM 是一种改进的循环神经网络(RNN),可以有效解决传统 RNN 的“长期记忆丢失”问题。

它的核心思想是:
🔁 保留关键的过去信息,同时丢弃无用的旧信息,从而更好地预测未来。

在作物建模中,LSTM 可以根据连续多天的气象和遥感数据,预测后续某天的作物长势(如 NDVI、生物量等)。


📊 示例案例:预测小麦NDVI变化趋势

我们使用 R 语言 + Python 结合(这里以 Python 为主)来完成一个案例。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Chh0715

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值