农产品期货价格预测:基于LSTM的时间序列聚类与降噪方法【附数据】

📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建

✨ 专业领域:

金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用


💡 擅长工具:

Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导


📚 内容:

金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
 

具体问题可以私信或查看文章底部二维码

✅ 感恩科研路上每一位志同道合的伙伴!

(1)农产品期货价格预测的重要性与模型构建 农产品期货价格的波动对现货市场有着直接的影响,因此,构建一个准确的农产品期货价格预测模型对于市场宏观调控和风险管理具有重要意义。本文提出了一种基于多元影响因素的农产品期货价格预测模型LSTM-FD,该模型通过综合考虑多种影响因子,有效提高了价格预测的准确度。模型的构建首先涉及对白糖期货等农产品期货的影响因子进行分类和处理,包括气候、经济、政策等多个维度的因素,然后提取这些影响因子的特征并构建数学模型,为后续的预测分析打下基础。

(2)气候数据的时间序列聚类算法FASM-WD 考虑到气候对农产品产量和价格的重要影响,本文提出了一种面向气候数据的时间序列聚类算法FASM-WD。该算法能够根据农作物生长所需的气候特征,将气候

【资源说明】 基于python深度学习实现数十种农产品及其竞品的未来价格预测源码+项目说明.zip 项目简介 基于python实现数十种农产品及其竞品的未来价格预测预测分为长期预测和短期预测,基于预测结果给出农民和消费者相关建议,再基于django框架搭建了三个数据接口,供前端使用。 API接口文档:www.apifox.cn/apidoc/shared-ce849393-bb46-43da-a03c-2e33fe0760bb 实现三种接口: + 示范县农产品展示接口:展示被预测的示范县农产品 + 价格预测接口(短期和长期):预测农产品及其竞品未来价格,并给出建议 + 价格比较接口(短期和长期):查询农产品预测价格和真实价格的差异 <img src="img\系统架构.png" style="zoom: 18%;" /> ## 2.价格预测技术 前期,负责爬虫的同学针对本项目中选定的示范县农产品在电商网站上连续爬取6个月的价格数据、所在地的天气数据等相关特征,并为每个农产品选定了3种竞争品和替代品也爬取了对应的特征数据,存储在数据库中。 <img src="img\数据库E-R图.png" style="zoom: 32%;" /> 针对上述的基础数据,进行预处理和特征筛选后,采用不同的机器学习算法预测,最后选择了XGBoost算法对农产品的未来价格做短期预测(15天)和长期预测(6个月),短期预测每天的价格,长期预测月平均价格。 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值