d2l笔记: 6 卷积神经网络

d2l笔记: 6 卷积神经网络

从全连接层到卷积

多层感知机适合处理表格数据,在问题中,我们预先不知道有什么关联信息。但是在视觉领域,有一些特点可以辅助我们对信息进行判断,而且多层感知机在面对海量的信息时维度过大,会导致训练上非常难以进行。

视觉对象具有局部性和平移不变性,也就是说,神经网络的前面几层应该只探索图像的局部区域,而且不管这个对象出现在图像中的哪个位置,都会使这几层有相似的反应。

根据这两个原则,我们将多层感知机“优化”为卷积神经网络。

图像卷积

卷积运算类似于向量的内积运算,结果是一个数字,可以表示相关性。

在二维互相关运算(卷积运算的简化版)中,卷积窗口从输入张量左上角开始,从左到右、从上到下滑动。 当卷积窗口滑动到新一个位置时,包含在该窗口中的部分张量与卷积核张量进行按元素相乘,得到的张量再求和得到一个单一的标量值,由此我们得出了这一位置的输出张量值。

LeNet

网络结构与PyTorch实现

LeNet-5 由卷积编码器(两个卷积层)和全连接层密集块(三个全连接层)组成。

由于当时ReLU和最大汇聚层还没有出现,所以LeNet在卷积块中使用的还是sigmoid激活函数和平均汇聚层。

网络的结构如下(去掉了最后一层的高斯激活):

net = nn.Sequential(
    nn.Conv2d(1, 6, kernel_size=5, padding=2),
    nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    
    nn.Conv2d(6, 16, kernel_size=5),
    nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    
    nn.Flatten(),
    nn.Linear(16 * 5 * 5, 120),
    nn.Sigmoid(),
    
    nn.Linear(120, 84),
    nn.Sigmoid(),
    
    nn.Linear(84, 10))

各层的输出的形状:

下面的四个参数分别为:batch_size大小,图像的通道数,图像的高度,图像的宽度

Conv2d output shape: torch.Size([1, 6, 28, 28])
Sigmoid output shape: torch.Size([1, 6, 28, 28])
AvgPool2d output shape: torch.Size([1, 6, 14, 14])
Conv2d output shape: torch.Size([1, 16, 10, 10])
Sigmoid output shape: torch.Size([1, 16, 10, 10])
AvgPool2d output shape: torch.Size([1, 16, 5, 5])
Flatten output shape: torch.Size([1, 400])
Linear output shape: torch.Size([1, 120])
Sigmoid output shape: torch.Size([1, 120])
Linear output shape: torch.Size([1, 84])
Sigmoid output shape: torch.Size([1, 84])
Linear output shape: torch.Size([1, 10])

模型训练和评估

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size=batch_size)

在使用GPU计算数据集之前,需要将其从内存中复制到显存中,因此需要加上 X = X.to(device)y = y.to(device)

def evaluate_accuracy_gpu(net, data_iter, device=None):
    if isinstance(net, nn.Module):
        net.eval()
        if not device:
            device = next(iter(net.parameters())).device

    metric = d2l.Accumulator(2)
    with torch.no_grad():
        for X, y in data_iter:
            if isinstance(X, list):
                X = [x.to(device) for x in X]
            else:
                X = X.to(device)
            y = y.to(device)
            metric.add(d2l.accuracy(net(X), y), y.numel())
    return metric[0] / metric[1]

训练函数也需要在正向和反向传播之前加上 X, y = X.to(device), y.to(device) 将一个 batch 的数据移动到 GPU 上。

同时,使用Xavier随机初始化模型参数。

def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):
    # 用Xavier初始化模型参数
    def init_weights(m):
        if type(m) == nn.Linear or type(m) == nn.Conv2d:
            nn.init.xavier_uniform_(m.weight)
    net.apply(init_weights)
    # 监控训练的设备
    print('training on', device)
    net.to(device)
    # 随机梯度下降 交叉熵损失
    optimizer = torch.optim.SGD(net.parameters(), lr=lr)
    loss = nn.CrossEntropyLoss()
    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
                            legend=['train loss', 'train acc', 'test acc'])
    timer, num_batches = d2l.Timer(), len(train_iter)
    for epoch in range(num_epochs):
        metric = d2l.Accumulator(3)
        net.train()
        for i, (X, y) in enumerate(train_iter):
            timer.start()
            optimizer.zero_grad()
            X, y = X.to(device), y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            l.backward()
            optimizer.step()
            with torch.no_grad():
                metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])
            timer.stop()
            train_l = metric[0]/metric[2]
            train_acc = metric[1]/metric[2]
            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,
                             (train_l, train_acc, None))
        test_acc = evaluate_accuracy_gpu(net, test_iter)
        animator.add(epoch+1, (None, None, test_acc))
    print(f'loss {train_l:.3f}, train acc {train_acc:.3f}, '
          f'test acc {test_acc:.3f}')
    print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec '
          f'on {str(device)}')

最后调用函数进行训练和评估。

lr, num_epochs = 0.9, 10
train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
  • 23
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值