YOLOv8训练火焰烟雾识别全流程详解

训练过程

步骤:

  1. 配置环境
  • pip install ultralytics
  1. 下载数据集
  • 按照下图所示顺序创建目录
    • test:测试集
    • train:训练集
    • valid:验证集
      • iamges:图像
      • labels:每一张图像的参数

  1. 创建data.yaml文件(见下面)
  2. 运行命令,可以规定epoch

yolo task=detect mode=train model=yolov8n.pt data=data.yaml epochs=500 imgsz=416 patience=0 plots=True

  • patience=100 意味着如果连续 100 个 epoch 中模型在验证集上的性能(如 mAP)没有提升,训练会自动停止 , 如果不希望提前停止,可以设置 patience=0,则训练将运行完整的 500 个 epoch。

label文件作用

在 YOLO 模型中,labels 文件用于存储每张图片中目标对象的位置和类别标签。每张图片对应一个同名的 labels 文件,用于告诉模型图片中有哪些目标对象、这些对象的类别是什么,以及它们的位置。

YOLO labels 文件的内容格式

labels 文件通常是一个 .txt 文件,格式如下:

<class_id> <x_center> <y_center> <width> <height>

其中:

  • <class_id>:目标的类别 ID,从 0 开始编号,表示当前目标属于哪个类别。
  • <x_center>** 和 **<y_center>:目标边界框的中心点坐标,通常是相对于图片宽度和高度的归一化值,范围在 0 到 1 之间。
  • <width>** 和 **<height>:目标边界框的宽度和高度,同样是相对于图片宽度和高度的归一化值,范围在 0 到 1 之间。

示例

假设 labels 文件名为 image1.txt,内容如下:

0 0.5 0.5 0.2 0.3
1 0.7 0.3 0.1 0.1

解释:

  • 第一行:目标类别为 0,中心点位于图片中点(0.5, 0.5),宽度为 0.2,高度为 0.3
  • 第二行:目标类别为 1,中心点位于图片的 (0.7, 0.3),宽度为 0.1,高度为 0.1

labels 文件在训练中的作用

在训练中,模型会通过 labels 文件中的信息找到目标对象的边界框和类别,进行目标检测的训练。模型学习如何根据图片中的像素特征来预测目标对象的边界框和类别标签。

data.yaml文件作用

在 YOLOv8 中,data.yaml 文件用于定义数据集的路径和类别信息,是训练和验证模型的重要配置文件。它帮助 YOLOv8 知道在哪里找到训练、验证、测试数据以及要检测的类别。

  1. 指定数据集路径:告诉模型训练、验证、测试数据集所在的文件夹路径。
  2. 定义类别:提供目标检测任务中的类别名称和数量,以便模型正确地识别不同的目标。

data.yaml 文件的基本结构

一个典型的 data.yaml 文件包含以下内容:

train: path/to/train/images  # 训练集图片文件夹路径
val: path/to/val/images      # 验证集图片文件夹路径
test: path/to/test/images    # 测试集图片文件夹路径(可选)

nc: 3  # 类别数量,例如检测火焰时有火焰、烟雾和其他的标签
names: ["fire", "smoke", "background"]  # 每个类别的名称列表

关键字段说明

  • train:指定训练集图片的文件夹路径。文件夹中应包含 images 文件夹和 labels 文件夹。
  • val:指定验证集图片的文件夹路径。
  • test(可选):指定测试集图片的文件夹路径,训练时一般不使用,但可以在模型评估阶段使用。
  • nc:(number of classes)目标检测任务的类别数量,即模型将检测的不同对象类型数量。
  • names:一个字符串列表,定义每个类别的名称,模型会使用这些名称识别不同的目标。

示例

假设项目目录结构如下:

project/
├── data.yaml
├── train/
│   ├── images/
│   └── labels/
├── val/
│   ├── images/
│   └── labels/
└── test/
    ├── images/
    └── labels/

对应的 data.yaml 文件可以写成:

train: project/train/images
val: project/val/images
test: project/test/images

nc: 2
names: ["fire", "smoke"]

data.yaml 文件的作用总结

  • 训练路径配置:为 YOLO 模型提供数据集路径。
  • 类别信息:定义模型所需的类别,使得模型在训练和检测时知道每个类别的含义。

有了 data.yaml 文件,YOLOv8 就能正确地定位数据集、加载类别信息,并根据指定的训练和验证集路径进行训练和测试。

实际案例

names:
- Fire
- default
- smoke
nc: 3
roboflow:
  license: CC BY 4.0
  project: fire-wrpgm
  url: https://universe.roboflow.com/custom-thxhn/fire-wrpgm/dataset/8
  version: 8
  workspace: custom-thxhn
#test: D:\A_Document\IPBD\ai\firedetection1\fire_data\test\images
train: D:\A_Document\IPBD\ai\firedetection1\fire_data\train\images
val: D:\A_Document\IPBD\ai\firedetection1\fire_data\valid\images

这个 yaml 文件是一个 YOLOv8 模型的配置文件,用于定义数据集的信息,包括类别、路径和其他元数据。让我们逐行解释:

配置项解析
names:
- Fire
- default
- smoke
  • names:定义了模型要检测的目标类别名称列表。

类别列表的顺序从 0 开始,即 Fire 的类别 ID 为 0default1smoke2

- `Fire`:类别名称,可能表示火焰。
- `default`:类别名称,这通常是一个通用类别名称,可能表示默认的非火焰物体或背景。
- `smoke`:类别名称,表示烟雾。
nc: 3
  • nc:类别数量。此处为 3,表示数据集中有 3 个不同的检测类别,与 names 列表一致。
roboflow:
  license: CC BY 4.0
  project: fire-wrpgm
  url: https://universe.roboflow.com/custom-thxhn/fire-wrpgm/dataset/8
  version: 8
  workspace: custom-thxhn
  • roboflow:包含数据集的元数据信息,表明此数据集可能是从 Roboflow 平台导出的。
    • license:数据集的许可证类型,CC BY 4.0 表示该数据集遵循 Creative Commons Attribution 4.0 许可协议,允许共享和修改,需注明出处。
    • project:数据集项目名称 fire-wrpgm
    • url:数据集的 URL,指向 Roboflow 平台上的项目链接。
    • version:数据集的版本号,表明当前数据集是第 8 版。
    • workspace:Roboflow 平台上的工作区名称 custom-thxhn
#test: D:\A_Document\IPBD\ai\firedetection1\fire_data\test\images
train: D:\A_Document\IPBD\ai\firedetection1\fire_data\train\images
val: D:\A_Document\IPBD\ai\firedetection1\fire_data\valid\images
  • test(已注释掉):定义测试集图片路径,当前被注释掉,表明在训练阶段不会使用测试集。如果需要在训练后对测试集评估,可以取消注释。
  • train:训练集图片路径,D:\A_Document\IPBD\ai\firedetection1\fire_data\train\images 指向训练数据图片文件夹。
  • val:验证集图片路径,D:\A_Document\IPBD\ai\firedetection1\fire_data\valid\images 指向验证数据图片文件夹。
总结

此配置文件定义了 YOLO 模型的类别名称、类别数量、训练和验证数据路径以及数据集元数据信息。模型会基于 trainval 路径进行训练和验证,类别信息将用于检测任务中的目标分类。

### YOLO火焰检测实现方案及相关资源 #### 数据收集与准备 为了构建一个高效的火焰检测系统,需要高质量的数据集作为基础。数据应包含各种场景下的火焰烟雾以及可能的热点区域图像和视频片段[^1]。这些素材需经过细致的人工标注过程来定义目标边界框及其类别标签。 #### 数据增强策略 考虑到真实世界中的复杂环境条件,在原始数据基础上实施一系列变换操作可以有效提升模型泛化能力。常用方法包括但不限于随机裁剪、翻转、旋转、调整亮度对比度饱和度等参数设置[^2]。 #### 训练配置建议 对于基于YOLO架构的目标检测任务而言,合理设定超参至关重要。例如锚点尺寸的选择应当依据具体应用场景而定;批量大小(batch size)则取决于硬件资源配置情况。此外还需注意学习率调度机制的设计以促进收敛速度加快的同时保持稳定性[^3]。 #### 示例代码展示 以下是利用PyTorch框架配合YOLOv5版本完成自定义火灾数据集训练的一个简单脚本: ```python import torch from pathlib import Path # 定义设备类型 CPU/GPU device = 'cuda' if torch.cuda.is_available() else 'cpu' def main(): # 设置工作目录路径 project_dir = str(Path(__file__).parent.resolve()) # 调用官方API启动训练流程 !python {project_dir}/yolov5/train.py --img 640 \ --batch 16 --epochs 50 --data fire_dataset.yaml \ --cfg yolov5s.yaml --weights '' --name yolo_fire_detection if __name__ == '__main__': main() ``` 上述代码展示了如何调用`train.py`脚本来执行整个端到端的学习进程,并指定了输入分辨率(`--img`)、批次数量(`--batch`)等多个重要选项值。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值