[自动驾驶技术]-9 感知规控算法模型完整介绍

目前市场上自动驾驶感知规控模型可以分为两种:传统顺序方法(感知-行为决策-运动规划-反馈控制)、基于深度学习的端到端模型。

第一种传统顺序方法

1 感知:目标检测和车道检测

3D目标检测是自动驾驶、机器人视觉和增强现实等领域中的一个重要研究方向,主要分为三类:基于单目图像的检测、基于点云的检测和基于多传感器融合的检测。不同方法各有优缺点,基于单目图像的方法成本低、部署简单、但精度有限缺乏深度信息,基于点云的方法精度高但计算复杂度大,多传感器融合方法能够在精度和鲁棒性上取得较好平衡。

1)基于单目图像的检测

基于单目图像的3D目标检测利用单个摄像头捕获的二维图像信息,通过引入第三维度来估计物体的3D位置和尺寸。这种方法的核心在于估算3D边界框,通常需要结合深度估计技术。

主流算法:

  • Mono3D:通过生成候选区域并利用卷积神经网络进行特征提取和边界框回归来进行3D检测。
  • Deep3DBox,通过2D边界框估计物体的姿态,并利用深度学习网络进行3D边界框的回归。
  • MonoGRNet:结合几何推理网络,在2D检测的基础上进行3D边界框估计。

2)基于点云的检测

基于点云的检测利用激光雷达或深度摄像头获取的3D点云数据进行物体检测。此方法进一步分为投影方法、体积卷积方法和点网方法。

2.1)投影方法

点云投影方法通过将3D点投影到2D平面上,然后利用2D检测算法进行3D边界框的回归。

  • PointPillars:将点云数据分割成柱状结构,并利用2D卷积神经网络进行处理。
  • SqueezeSeg:使用球形投影来处理点云数据,并进行物体检测。
2.2)体积卷积方法

体积卷积方法假设场景或物体以3D网格或体素表示,每个体素包含属性信息,如占用率或点密度。

  • VoxelNet:将点云数据转换为3D体素,并利用3D卷积网络进行特征提取和边界框回归。
  • SECOND:优化了体素化过程,提升了计算效率。
2.3)点网方法

点网方法直接处理原始点云数据,避免了投影和量化带来的信息丢失。

  • PointNet:直接对点云数据进行处理,通过对点云的每个点进行特征提取,并进行物体检测。
  • PointRCNN:结合点云特征和区域建议网络进行3D物体检测。

3)基于多传感器融合的检测

多传感器融合方法结合了单目图像和点云数据,通过融合不同传感器的数据,提高检测精度和鲁棒性。

MV3D:利用3D区域提议网络生成3D候选区域,并结合多视角特征进行检测。

AVOD:融合图像和点云数据,在生成3D ROI后进行多视角特征提取和边界框回归。

2 感知:目标检测和车道检测

车道检测是自动驾驶系统中的关键任务之一,其目的是识别并追踪道路上的车道标记,从而帮助车辆保持在正确的车道内行驶。车道检测技术主要分为两大类:基于特征的方法和基于模型的方法。此外,深度学习方法近年来也被广泛应用于车道检测。

1)基于特征的方法

基于特征的方法通过提取图像中的颜色、纹理和边缘等特征来检测车道线,这类方法通常依赖于图像处理技术和机器学习算法。

颜色特征:利用车道标记的颜色信息(如白色或黄色)来区分车道线和背景。例如通过颜色阈值分割图像。

纹理特征:分析车道标记的纹理特征,通常结合边缘检测方法,如Sobel算子和Canny边缘检测。

边缘特征:使用边缘检测算法检测图像中的直线或曲线边缘。常用的算法有Hough变换和Canny边缘检测。

2)基于模型的方法

基于模型的方法利用几何模型(如线性模型、抛物线模型、样条曲线等)来描述车道线的形状,从而提高检测的准确性和鲁棒性。

线性模型:假设车道线在图像中呈直线,用直线拟合方法(如最小二乘法)来检测车道线。

抛物线模型:假设车道线为抛物线,适用于检测弯道上的车道线。

样条曲线模型:利用样条曲线描述车道线的形状,适用于复杂道路场景。

3)基于深度学习的方法

深度学习方法近年来在车道检测中取得了显著进展,主要是通过卷积神经网络(CNN)来学习图像中的车道特征,从而提高检测的鲁棒性和准确性。

LaneNet:使用CNN提取图像特征,并通过全连接层进行车道线分割。

SCNN(Spatial CNN):通过空间卷积操作处理车道线的长距离依赖性,提高检测精度。

ENet-SAD:结合注意力机制和分割网络进行车道线检测和分割。

3 路径规划

路径规划主要解决车辆在有向带权图上进行最短路径搜索的问题。主要算法包括:

1)基于图的算法:如Dijkstra算法(用于在图中找到从起点到终点的最短路径,适用于图中所有边权重为非负的情况)和A*算法(在Dijkstra算法的基础上引入启发式函数,提高了搜索效率,适用于大规模图的路径搜索),在离散化地图上搜索最短路径。

2)基于采样的算法:快速扩展随机树(RRT)及其变种(RRT*,RRT-Connect)在配置空间中探索可行路径;概率道路图方法(PRM),构建随机样本网络并将其连接形成道路图。

3)基于优化的算法:如模型预测控制(MPC),通过优化代价函数在规划时间内生成平滑且安全的轨迹。

4 行为决策

行为决策根据生成的路径、其他交通参与者的感知行为和道路状况等信息,确定车辆在不同情境下的具体动作,如变道、跟车、停车等;它涉及理解环境和预测其他道路使用者的行为,以选择最优的驾驶策略。主要方法包括:

1)有限状态机(FSM):将驾驶行为建模为有限状态机,通过状态转换来决定下一步行为。

2)马尔科夫决策过程(MDP):考虑其他交通参与者行为的不确定性,通过状态、动作和奖励模型进行决策。

3)部分可观测的MDP(POMDP)来考虑不确定性和交互,适用于复杂环境。

4)基于强化学习:通过与环境交互学习最优策略。

5 反馈控制

反馈控制器将规划的路径和轨迹转化为执行器的输入,补偿执行器误差和外界干扰,主要目标是稳定车辆的动态行为,实现精确跟踪;所生产的轨迹对于车辆必须动态可行,对于乘客尽量舒适并且避免与其它障碍物碰撞。主要方法包括:

1)模型预测控制(MPC):基于车辆动力学模型预测未来状态,并通过优化目标函数生成控制输入。

2)比例-积分-微分控制(PID):通过调整比例、积分和微分参数,实现系统稳定和响应,适用于多种控制任务。

3)线性二次调节器(LQR):通过最小化二次代价函数,优化控制输入,适用于线性系统。

第二种端到端自动驾驶算法模型

基于深度学习的端到端自动驾驶算法模型代表了一种新兴的自动驾驶技术架构,它通过直接从传感器输入生成控制指令,而不需要中间的特征提取、路径规划和决策层。

1)传感器数据输入:摄像头、雷达、激光雷达等传感器捕获周围环境的原始数据。

2)神经网络处理:深度学习模型处理输入数据,提取相关特征。

3)输出控制指令:模型直接生成加速度、转向角等控制指令。

这种方式简化了处理流程,减少了传统方法中繁琐的感知、决策和规划步骤,能够从大量数据中学习复杂的驾驶场景和行为。但数据需求量大,需要大量的标注数据进行训练,而且模型内部机制较难理解和解释,确保安全性和对未知场景的泛化能力仍然是这种方法的重大挑战。

特斯拉的自动驾驶系统(Autopilot)是业内知名的采用端到端深度学习方法的案例之一,特斯拉采用了多任务学习(Multi-Task Learning)的方法,即一个神经网络同时处理多个任务,如物体检测、车道线检测和自由空间检测,将特征提取的结果用于生成驾驶决策,模型输出包括转向角、加速度、制动等控制信号,被发送到汽车的执行器(如转向系统、动力系统、制动系统),实现自动驾驶功能。

  • 23
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值