硬件准备
由于 isaac_gym 仿真平台需要 CUDA
,本文建议硬件需要配置 NVIDIA 显卡(显存>8GB、 RTX系列显卡),并安装相应的显卡驱动。建议系统使用 ubuntu18/20
,显卡驱动 525 版本
环境配置
建议在虚拟环境 conda
中配置该环境。
- 创建虚拟环境
conda create -n rl-go2 python=3.8
- 激活虚拟环境
conda activate rl-go2
- 安装
CUDA
,pytorch
pip3 install torch==1.10.0+cu113 torchvision==0.11.1+cu113 torchaudio==0.10.0+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html
注意 numpy库版本不要太高,建议安装 1.23.5版本。
- 下载 Isaac Gym Preview 4 仿真平台,解压后进入
python
目录,使用pip
安装。
# current directory: isaacgym/python
pip install -e .
- 运行
python/examples
目录下的例程,验证安装是否成功。
# current directory: isaacgym/python/examples
python 1080_balls_of_solitude.py
若安装成功,可看到如下窗口。
6. 安装rsl_rl库
git clone https://github.com/leggedrobotics/rsl_rl
cd rsl_rl && pip install -e .
模型训练使用
- 下载宇树官方示例代码
git clone https://github.com/unitreerobotics/unitree_rl_gym.git
- 修改
legged_gym/scripts/train.py
,legged_gym/scripts/play.py
中的sys.path.append("/home/unitree/go2/legged_gym")
为自己的路径。 - 激活强化学习虚拟环境
conda activate rl-go2
- 执行训练指令,开始训练。
python3 train.py --task=go2
修改 train.py 文件中的 args.headless
参数,可开启或关闭可视化界面。
isaac_gym 出现如下界面,则训练开始。
终端输出窗口如下:
训练 1500 次后,运行测试指令。
python play.py --task=go2
效果演示
go2机器狗