矩阵与空间变换

向量的核心运算是向量相加和数乘

(1)一对数字表达的向量依赖于使用的基

在向量表达时,一般省略基向量,如向量 a ⃗ = [ 1 2 ] \vec{a}=\begin{bmatrix}1\\2\end{bmatrix} a =[12]其默认基向量为
i ⃗ = [ 1 0 ] j ⃗ = [ 0 1 ] \vec{i}=\begin{bmatrix}1\\0\end{bmatrix}\vec{j}=\begin{bmatrix}0\\1\end{bmatrix} i =[10]j =[01]
实际为

a ⃗ = 1 ∗ i ⃗ + 2 ∗ j ⃗ \vec{a}=1*\vec{i}+2*\vec{j} a =1i +2j = [ 1 2 ] ∗ [ i ⃗ j ⃗ ] \begin{bmatrix}1&2\end{bmatrix}*\begin{bmatrix}\vec{i}\\\vec{j}\end{bmatrix} [12][i j ]= [ i ⃗ j ⃗ ] ∗ [ 1 2 ] \begin{bmatrix}\vec{i}&\vec{j}\end{bmatrix}*\begin{bmatrix}1\\2\end{bmatrix} [i j ][12]= [ 1 0 0 1 ] ∗ [ 1 2 ] \begin{bmatrix}1&0\\0&1\end{bmatrix}*\begin{bmatrix}1\\2\end{bmatrix} [1001][12]

(2)坐标系变换

若要求(1)中向量a在其他坐标系中的坐标值,则可将其当期基向量表达为新坐标系中的坐标值。
若坐标系N1 为原x-y坐标系逆时针旋转90度,则(1)中基向量 i ⃗ , j ⃗ \vec{i},\vec{j} i ,j 在新坐标系中坐标值分别为:
i ⃗ = [ 0 − 1 ] j ⃗ = [ 1 0 ] \vec{i}=\begin{bmatrix}0\\-1\end{bmatrix}\vec{j}=\begin{bmatrix}1\\0\end{bmatrix} i =[01]j =[10]
因此 a ⃗ \vec{a} a 在N1中坐标为
[ 0 1 − 1 0 ] ∗ [ 1 2 ] = [ 2 − 1 ] \begin{bmatrix}0&1\\-1&0\end{bmatrix}*\begin{bmatrix}1\\2\end{bmatrix}=\begin{bmatrix}2\\-1\end{bmatrix} [0110][12]=[21]
因此,要求向量在新坐标系的坐标,关键是得到当期坐标所参考的坐标系的基向量在新坐标系的向量值。
由此可以理解矩阵的意义,矩阵代表新的坐标空间,其每一列向量代表当前参考坐标系的基向量在新空间的表达,而矩阵与向量相乘

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值