2025年国内最强AI大模型是谁?哪个排名能最快了解模型能力排行?

绪论:国产大模型已经逐步追上了国际先进水平,选择有开源的国产大模型是目前的理智之选,但哪些大模型最强? 怎么选自己最合适的模型? 本文来回答

在国内选择使用国内的大模型,确实能在安全性与响应速度上带来显著优势。

不过,在众多大模型中做出最佳选择并不容易,这引发了一系列值得深入探讨的问题。

首先,面对市场上超过80种不同的大模型,确定哪一个是最符合自己的需求的选择成为了首要难题。

例如,阿里云的通义千问、百度的文心一言等都是目前比较知名的产品,但它们各自擅长的领域、性能特点可能有所不同。这就需要我们从技术背景、应用场景等多个维度进行全面考量,才能找到最适合自身需求的那个。

其次,关于大模型能力的排行榜层出不穷,哪个排行榜是最靠谱的?

有的排名可能更侧重于学术研究价值,而另一些则可能更加关注实际应用效果或用户体验。因此,理解这些排行榜背后的评价体系对于判断其客观性和准确性至关重要。比如,《机器之心》每年都会发布AI影响力报告,它不仅考虑了技术创新度,还兼顾了商业落地情况等因素。

最后,在挑选适合自己的大模型时,是否还需要考虑其他因素?

除了前面提到的安全性与响应速度外,还包括但不限于:模型是否支持定制化开发?价格?是否开源?等等,

这些问题直接关系到最终能否高效地利用大模型服务于特定场景,因此非常值得每一位潜在用户认真思考。

国内开源大模型概览:Qwen、yi、glm 在第一梯队

Qwen系列

由阿里巴巴云开发,最近推出了开源版本QWen 2.5,该系列覆盖了从7B到110B的全尺寸范围,并支持文本与视觉等多模态应用。通过全面开源其模型,Qwen展现了高度开放的态度,不仅促进了社区内的合作与发展,也展示了其作为第一梯队大模型的实力。

yi系列

是由李开复领导下的创新工场所推出的AI模型之一,虽然在技术实力上位于行业前列,但整体而言较为封闭,仅部分小型模型对外开放源代码,其中包括最高达到3.5B参数规模的小型变种。这种相对保守的态度限制了外部开发者对其深入研究或基于此进行二次开发的机会。

glm系列

源自清华大学背景深厚的智谱清言团队,凭借扎实的技术积累和学术底蕴,在国内外多个权威评测中均取得了优异成绩,属于国内顶尖水平的大规模语言模型之一。尽管该项目已对外公开了部分组件如GLM-4供研究使用,但在涵盖度(比如是否同时具备处理图像、声音等多种类型数据的能力)以及提供的模型选择多样性方面仍不及阿里云Qwen系列丰富。

豆包系列

是字节跳动推出的一款专注于消费端应用场景的语言模型,尤其擅长语音识别任务。然而,在综合性能尤其是跨领域知识理解能力等方面与其他顶级竞品相比尚存在一定差距,且未参与国际主流评测机构组织的比赛活动,因此在全球影响力上略显不足。

文心系列

为百度所研发的大规模预训练模型,主要针对中文语境下自然语言处理任务进行了优化设计。虽然在国内市场上表现不俗,但由于缺乏参与国际知名排行榜竞争的经历,故而难以客观评估其相对于海外同行的确切位置。此外,该系列产品线侧重于满足本土用户需求,在全球化布局方面动作较少。

混元系列

隶属于腾讯旗下,与百度文心类似,同样是中国互联网巨头自主研发的人工智能项目之一。混元最新开源了两个版本的模型。两者在技术水平上大致相当,都以服务国内市场为主要目标。不过值得注意的是,混元同样缺席了众多重要的全球性竞赛平台,这可能会影响外界对其实际能力的认知程度。

大模型能力评测方法概览

大模型本身的能力横评有两个主要方式。

一、 “基准测试”或“考试模式”

其核心思路是通过一系列固定的问题来评估模型在特定任务上的表现,从而提供一个可量化的性能指标。这种方式虽然容易导致“刷分”现象,但依然具有较高的参考价值。常见的基准测试包括:GSM-8K(侧重于数学问题解决能力)、MMLU(涵盖广泛的知识领域,旨在测试多学科理解力)、TheoremQA(专注于定理证明与逻辑推理能力)以及GPQA(关注一般知识问答能力)。

二、是“人类评估”或“竞技场模式”

它让两个或多个模型对同一个开放性问题进行回答,然后由人类评审员选择哪个答案更优。这种方法更加贴近实际应用场景,并且通常能够得到与基准测试相似的结果,但由于其基于人的主观判断,因此可能会引入一定的偏差。

从原理来说,最可信的测试,就是人类评估竞技场模式,这个模式可以非常客观的体现机器回答对人类的帮助,而且难以作弊,非常客观。


基准测试,可以参考huggingface的 : https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard


而人类评估竞技场模式,也可以参考国外 : https://lmarena.ai 的,或者咱们国内的平替 思南平台 : CompassArena

如何选择适合业务需求的大模型?

根据上述提供的知识,选择适合业务需求的大模型时,可以考虑以下几点:

1、榜单排名应优先从全球公认的权威排行榜上前20名的大模型中挑选。这些模型不仅在综合能力上表现优秀,而且对于特定任务(如代码生成或图像处理)也可能存在特别优化的版本,因此,在针对特定应用场景时,可进一步筛选那些在细分领域内表现出色的模型。

2、国情考量鉴于国际网络环境及法律法规差异,推荐选用国内研发的大模型产品,比如阿里云推出的通义千问等。这类国产模型能够更好地适应本地市场特点,同时避免了跨境数据传输可能带来的安全风险和合规挑战。

3、私有化部署支持:如果您的应用场景要求高安全性或对响应时间敏感,则需要考虑所选大模型是否支持私有化部署选项。例如,通过配置spring.ai.ollama.base-url指向自定义服务器地址,并关闭默认的云端服务连接(设置spring.ai.dashscope.chat.enabled=false),就可以实现将Ollama框架下的模型本地化运行。这样既能保证数据隐私,又不影响模型功能。

4、成本效益分析当以API方式接入外部服务时,主要关注点在于服务商报价;而在考虑私有化解决方案时,则需权衡硬件投入与软件授权费用之间的关系。一般而言,较小规模的模型虽然性能略逊一筹,但其较低的资源消耗意味着更低的整体拥有成本。因此,在满足基本需求的前提下,建议优先采用轻量级方案来控制预算。

通义Qwen凭借其在多模态大模型开源领域的领先地位及卓越性能,成为当前市场上的优选方案

1) 能力强:

通义Qwen在多个关键性能评测中取得了优异成绩,包括MMLU、TheoremQA、GPQA等国际公认的评估标准上超越了Llama 3 70B,并在Hugging Face的Open LLM Leaderboard上荣登首位。

2)全尺寸,多模态全部开源:

在当前市场上展现出卓越的竞争力,特别是在开放性和多模态大模型开源方面领先。它不仅提供了7B~110B 全尺寸的大模型开源,也提供了图片,语音,视频,文字、代码等多模态大模型开源

这对于私有化部署非常有好处。

在国内,通义Qwen的能力处于绝对的第一梯队。

3)价格合适

对于初次尝试或预算有限的用户来说,通义还提供了100万免费token,使得无论是通过API调用还是自建服务的成本都相对较低,甚至可以实现完全免费使用部分功能。

特别值得一提的是,通义旗下的Qwen与Qwen VL两个版本,在国内开源项目排名中均位列前茅,显示出了极高的技术水平和广泛的应用潜力。因此,无论是在技术创新性、性价比还是实用性方面,通义Qwen都是一个值得推荐的选择。

AI大模型通常指的是拥有数亿甚至数千亿参数的深度学习模型,这些模型通过在大量数据上进行预训练,具备了在多种任务上进行有效推理的能力AI1.0时代的模型,如BERT、GPT等,主要依靠大量数据和计算资源进行训练,虽然取得了一定的成绩,但在理解和生成语言方面的能力有限。而AI2.0时代的模型,例如GPT-4和PaLM-E,通过进一步提升模型的规模和训练数据量,使得模型在自然语言处理、多模态理解和交互等方面的能力有了质的飞跃。 参考资源链接:[国内13家AI大模型概览与体验链接汇总](https://wenku.csdn.net/doc/7ja0wamb21?spm=1055.2569.3001.10343) 为了接触和体验国内AI大模型产品,你可以通过《国内13家AI大模型概览与体验链接汇总》这份资料来获取一手信息。该资料详细介绍了包括复旦-MOSS、百度-文心一言、科大讯飞-星火、阿里云-通义和字节跳动-云雀在内的多个AI大模型的特点和使用链接。例如,复旦-MOSS可以通过访问<***>进行体验;百度的文心一言则可以通过<***>体验其文本问答和创作等功能;科大讯飞的星火大模型提供了跨领域知识和语言理解的试用,体验地址为<***>;阿里云的通义大模型提供了多轮对话和文案创作的体验,访问<***>即可使用;字节跳动的云雀大模型可以通过下载APP或访问<***>来体验其生成文本内容和语音回答的功能。这些大模型的使用体验不仅能让你直观感受到AI技术的进步,而且有助于你理解AI2.0时代的智能化应用。在深入体验这些模型后,建议继续深入学习《国内13家AI大模型概览与体验链接汇总》中的其他内容,以便全面掌握国内AI大模型的发展状况和应用潜能。 参考资源链接:[国内13家AI大模型概览与体验链接汇总](https://wenku.csdn.net/doc/7ja0wamb21?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值