AI智能客服:基于人工智能技术的24小时自动应答系统
AI智能客服是利用人工智能技术,如自然语言处理、机器学习等,为用户提供自动化客户服务的系统。它可以理解并回应用户的问题,提供24小时不间断的服务,有效提升客户满意度同时降低企业成本。
主要应用场景包括但不限于:
在线购物平台的售前咨询与售后支持;
银行、保险等金融机构的信息查询及业务办理指导;
电信运营商的话费查询、套餐变更等服务;
以及各类企业的常见问题解答和预约安排等。
通过模拟真人对话,AI智能客服能够为用户提供更加便捷、高效的服务体验。
本例子使用通义晓密实现,这是一个图形界面的AI智能客服,目前处理一千个问题仅需27元。
此外,目前有一个1000次免费体验的机会,每个阿里云UID账号可享受一次,包含了配置1个机器人及解析80页文档等服务。
目录
AI加持的智能客服如何提升服务体验
基于大模型AI加持下,智能客服能够更好地理解用户的多模态输入。
这意味着它不仅能够处理文本信息,还能理解图像、声音等其他形式的交流方式。
同时,在回应用户时也能采用更加多样化的输出形式,比如通过语音合成技术生成自然流畅的声音回答。
与传统客服机器人相比,最大的不同在于其理解和解答问题的准确性有了本质上的提升。
例如,在实际应用中观察到,基于关键词匹配的传统客服系统人工介入率高达60%以上。
而采用了先进AI技术后,这一比率显著降低至20%以下。
更重要的是,由于响应速度更快、答案更准确,用户倾向于更多地向AI智能客服提问。
这减少了用户因等待人工服务而产生的不便感,提高了整体的服务效率和用户体验。
基于AI的智能客服工作原理简介
在AI智能客服整个系统里,最重要的技术就是 检索增强生成(Retrieval-Augmented Generation, RAG)技术被用来结合大模型的能力与外部知识库的信息。
他大概的步骤是:
1)当用户提出问题时,系统会先通过检索机制从预先构建的知识库中找到最相关的一组文档或段落。
这些检索到的内容随后会被送入到一个经过专门训练的Transformer模型中,该模型不仅学习了如何理解自然语言,还学会了如何根据提供的上下文信息生成高质量的回答。
2)在处理过程中,模型将用户的问题和检索到的相关信息作为输入,利用其强大的文本理解和生成能力,综合考虑两者来形成最终的答案。
这样做不仅可以让模型基于现有的广泛知识进行作答,还能确保答案的准确性和时效性,因为知识库可以定期更新以包含最新的信息。
3)RAG框架下的这种方法还可以减少对大量参数的需求,使得即使是在资源受限的情况下也能提供高效的服务,同时保持高水平的表现。
通过这种方式,基于Transformer的智能客服能够更加灵活地应对各种复杂场景下的用户咨询,提高了客户服务体验的同时也降低了运营成本。
阿里通义千问赋能的智能客服解决方案
阿里云通义团队最新推出的智能机器人,结合了AI大模型技术和阿里的实际业务实践,是一个很好的解决方案。它支持钉钉、微信等多种渠道的客服输出,已经成功服务于数百个客户。特别值得一提的是其成本效益,处理一千个问题仅需27元。此外,目前有一个1000次免费体验的机会,每个阿里云UID账号可享受一次,包含了配置1个机器人及解析80页文档等服务。这为企业提供了一个降低人工成本并提升工作效率的理想选择。
如何操作通义智能机器人
具体怎么使用通义智能机器人
准备工作
首先,确保您已经拥有阿里云账号。您可以选择通过手机号、淘宝或支付宝等方式注册一个阿里云账号。接着,需要购买业务空间(即实例资源),这是创建客服机器人的基础环境。如果您的企业内有多用户协同管理的需求,还可以通过RAM用户来实现细粒度的权限分配与资源管理。关于如何为RAM用户授权,请参考授予RAM用户管理云小蜜的权限和用户管理。
搭建步骤
按照以下四步来完成机器人的搭建:
创建机器人
登录到智能对话机器人的管理控制台后,在左侧导航栏中依次点击“应用管理 > 机器人 > 新建机器人”。在弹出窗口填写包括头像、名称等在内的基本信息,并确认以完成创建过程。
配置机器人
进入业务空间并选定要配置的机器人后,可以通过左侧菜单进行各项设置,使机器人具备准确回答问题的能力。
- 基础配置:设定人设、回复风格以及欢迎语等基本属性,详情见基础设置。
- 知识绑定:关联不同类型的知识来源,比如文档、高频问答、流程管理和API插件、网站知识及数据表格,具体操作指南可参阅文档知识管理、高频问答、技能管理(机器人空间)、网站知识和表格管理(机器人空间)。
- 高级设置:包括无答案处理方式、安全过滤机制及推荐问题功能等。
- 转人工设置:定义触发人工服务的标准以及相应通知内容。
导入文档时需注意支持格式限制(PDF, DOC/DOCX, TXT),每个文件大小不超过一定限额。上传完成后,可以利用自动解析功能快速将文档转换为可用形式。
效果测试
配置完毕后,可通过向机器人提问相关话题来验证其是否能正确引用已导入资料作答。
发布
最后一步是将开发中的机器人和相关知识发布至生产环境供实际使用。有三种不同的发布模式可供选择:仅发布机器人、发布机器人及其知识库,或者基于整个业务空间层面的知识更新。每种方法都有其特定的应用场景,详细说明请查阅知识与机器人发布。
操作后续
成功部署之后,还可以考虑采用Web网页等形式将对话界面集成到公司网站或其他平台之上,从而让客户能够直接通过互联网渠道接触到智能客服系统。更多关于部署方案的信息,请访问部署应用页面获取。
正式环境支持微信、钉钉等输出端。
具体见微信部署文档