R语言【utils】——stack():从数据帧或列表中堆叠或解堆叠向量

Package utils version 4.2.0


Description

堆叠向量将多个向量连接成单个向量,并加上一个指示每个观察来源的因子。解除堆叠将反转此操作。


Usage

stack(x, ...)
## Default S3 method:
stack(x, drop=FALSE, ...)
## S3 method for class 'data.frame'
stack(x, select, drop=FALSE, ...)

unstack(x, ...)
## Default S3 method:
unstack(x, form, ...)
## S3 method for class 'data.frame'
unstack(x, form, ...)

Arguments

参数【x】:要堆叠或解除堆叠的列表或数据帧。

参数【select】:一个表达式,指示从数据帧中选择哪个变量。

参数【form】:一个等号公式,其左侧求值为要解堆叠的向量,右侧求值为要创建的组的指示符。默认为 unstack 的数据帧方法中的 formula(x)

参数【drop】&#x

### 使用 PyTorch 实现 Transformer 进行视频分类 在处理视频数据时,通常会遇到三维张量 (帧数, 高度, 宽度),这与传统的二维图像输入不同。为了适应这种变化,在构建基于 Transformer 的模型时,需要特别注意如何预处理这些多维时间序列数据[^1]。 #### 数据准备 对于视频分类任务来说,合理的做法是从原始视频文件中提取固定长度的帧作为样本,并将其转换成适合传递给神经网络的形式: ```python import torch from torchvision import transforms as T from torch.utils.data import Dataset, DataLoader class VideoDataset(Dataset): def __init__(self, videos_paths, labels, transform=None): self.videos_paths = videos_paths self.labels = labels self.transform = transform def __len__(self): return len(self.videos_paths) def __getitem__(self, idx): path = self.videos_paths[idx] label = self.labels[idx] frames = load_video_frames(path) # 自定义函数用于加载并返回一系列帧组成的列表 if self.transform: frames = [self.transform(frame) for frame in frames] tensor_stack = torch.stack(frames).permute(0, 3, 1, 2) # 调整维度顺序以匹配后续操作需求 sample = {'video': tensor_stack, 'label': label} return sample ``` #### 构建 Transformer 模型架构 接下来创建一个简单的 Transformer 编码器结构来接收上述形式的数据集实例。这里采用 `nn.TransformerEncoderLayer` 和 `nn.TransformerEncoder` 来快速搭建基础框架: ```python import math import torch.nn.functional as F from torch import nn class PositionalEncoding(nn.Module): def __init__(seq_len=50, d_model=512, dropout=.1): super().__init__() pe = torch.zeros(seq_len, d_model) position = torch.arange(0, seq_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0).transpose(0, 1) mask = nn.Parameter(pe, requires_grad=False) def forward(x): x += mask[:x.size(0), :] return x class VideoTransformerModel(nn.Module): def __init__(input_channels=3, num_classes=10, nhead=8, nhid=2048, nlayers=6, dropout=.5): super().__init__() encoder_layers = nn.TransformerEncoderLayer(d_model=input_channels*nhid//nhead, nhead=nhead, dim_feedforward=nhid, dropout=dropout) transformer_encoder = nn.TransformerEncoder(encoder_layer=encoder_layers, num_layers=nlayers) positional_encoding = PositionalEncoding(seq_len=max_seq_length, d_model=input_channels*nhid//nhead) fc_out = nn.Linear(input_channels*nhid//nhead, num_classes) initrange = .1 fc_out.bias.data.zero_() fc_out.weight.data.uniform_(-initrange, initrange) def forward(src): src = src.view(src.shape[0], -1) # 将空间尺寸展平为特征向量 output = positional_encoding(src) output = transformer_encoder(output) output = torch.mean(output, dim=1) # 对所有位置编码后的输出取平均值 output = fc_out(output) return F.log_softmax(output, dim=-1) ``` 请注意以上代码片段仅提供了一个简化版的概念验证实现方式;实际应用中可能还需要考虑更多细节优化以及针对具体应用场景做出调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ALittleHigh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值