二维坐标系中的向量旋转公式

本文详细解析了如何使用三角函数表示二维坐标系中的向量,并介绍了向量逆时针旋转后的数学表达式,通过具体实例帮助理解向量旋转的计算过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

1、在二维坐标系中,一个向量可以使用三角函数来表示,左图中的向量用三角函数表示为:

x0 = |R| * cosA

y0 = |R| * sinA

2、右图是将左图中向量逆时针旋转B之后得到的向量,它的向量可表示为:

x1 = |R| * cos(A + B) = |R| * cosA * cosB - |R|* sinA * sinB

y1 = |R| * sin(A + B) = |R| * sinA * cosB + |R| *cosA * sinB

将1中的式子带到2中可以化简成下面这样:

x1 = x0*cosB - y0*sinB

y1 = y0*cosB + x0*sinB

当旋转方向是逆时针时,B取负值,如果旋转方向是顺时针方向,则B取正值

3、下图是一个例子,它是将向量v逆时针旋转a,得到向量v0,v0的向量表示为如下,这里不用管K,他是一个比例系数

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值