专题 | 大模型足够应用了吗?

文章探讨了大模型如ChatGPT的发展及应用落地问题,指出大模型与行业需求脱节,强调结合业务知识的重要性,同时提醒不要过度依赖大模型,而是要在特定场景中发挥其效率工具的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ChatGPT发布超过1年时间了,并且进一步由GPT-3.5更新升级到了GPT-4。国内大模型公司也基本在3-4月份前后开始陆续发布了Chat类产品,并且也都进行了1-2轮的迭代升级。大家对于大模型的关注也逐渐从对模型本身的关注开始转向大模型怎么应用上。那不经要问在各场景里大模型到底够不够用?大模型应用落地目前存在哪些问题?

大模型与应用脱节现象普遍

大模型发展目前还处在非常初级的阶段,虽然ChatGPT带动了大模型的出圈,但除了互联网行业圈层内,其他很多行业领域的可能还不清楚大模型为何物。所以应用和模型脱节的现象还比较普遍,目前普遍的现象是,做应用或有需求的,大模型不会用;做模型的,不知道场景和需求在哪?

图片

关于大模型落地的问题,还是从事大模型及相关领域的公司和人员更着急,具体行业领域中有一些已经在开始尝试,有一些在进行关注了,还有更多的可能在等待。大模型要能广泛的落地创造价值,一定需要各行各业的具体从业者更多的参与其中。

不要指望大模型能做一切

关于大模型的应用落地,许多人理想的认为,把所有问题直接丢给大模型,大模型就能给出准确的答案。但实际使用过程中,大家发现大模型输出的答案,往往达不到应用的需求。特别是越到具体的专业领域,现在主要的通用大模型,可能都不一定太擅长。即使在相对通用的场景,使用得当大模型确实可以帮忙解决不少问题,但也不要指望大模型能做一切,仍然需要有一定的人工介入或把关等。

结合业务知识事半功倍

基于大模型注意力机制的特点,更精准的prompt能使大模型能生成更令人满意的结果。所以业务流程和行业知识在大模型应用过程中的价值就显得非常重要。通过业务流程和行业知识,可以把要解决的问题拆解成更聚焦和精准小问题,根据各环节的需要合适的调用大模型的能力,最后将相关的内容有机组合和优化,可以让大模型应用的效果显著提高。

随着Agent技术的不断发展,后续许多业务流程和行业知识可以通过Agent的方式进行整合,发挥Agent一定的自主能力,进一步提高大模型应用的效率和精度,使其更好地服务于实际业务。

图片

做无法被模型取代的应用

大模型仍在不断的迭代,模型的通用能力等会继续增强。一些基于大模型的浅层应用,可能随着模型能力的增强或形式的调整,会被模型直接吞噬,就像ChatGPT出来之后把Jasper的空间吃掉一样。所以选择具体应用方向的时候,需要考虑是否容易被模型直接替换。业务流程、行业知识和领域数据可以成为大模型应用的门槛,越是往具体行业应用场景深耕,大模型能力的增强,对应用的效果更佳,而不是取代。

专业领域能力增强

在许多ToB的专业领域,现有的通用大模型可能还无法直接满足应用需求,GPT-4可能也无法直接胜任。因此,针对特定专业领域,根据数据量和应用的需求,可以选用增量预训练、微调、Embedding、RAG等多种不同的方法,将专业知识注入模型当中,实现专业领域能力的增强。要完成这个过程,通常基于开源模型比商业模型更容易,不论是从成本或者实操角度。

大模型已经成为效率工具

最近看到几个大模型落地应用的案例,包括电商和医疗等不同场景,大模型已经成为效率工具,以前需要很多人力完成的工作,借助大模型之后效率大幅提升。例如电商场景以前是有许多的运营客服人员,使用大模型生成产品推广的话术在私域流量中使用,以前需要几十个运营客服人员,现在实际只需要几个人就能完成全部的任务。

总结

回到我们开篇的问题,我们认为现在大模型在许多的场景里已经足够应用了。虽然目前主要的模型与GPT-4都还有一定差距,但并不能以此为阻碍落地的借口。让更多应用场景侧的从业者,能够参与到大模型应用创新中来,才是加速大模型落地的关键。当然在具体的大模型应用中,不要指望大模型能做所有的事,结合业务流程和行业知识可以事半功倍。2023年经过一年的摸索和尝试,小部分先行者已经尝到了大模型的甜头。2024年相信一定会有更多大模型应用落地的优秀案例。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值