CUDA
wishchin
CV算法工程师:从事室内场景感知方面工作,完成算法实验和软件开发。
展开
-
caffe:无法读取文件cuda8.0.props
在使用VS2015导入老版本的caffe程序时候,导入一个solution的多个工程,其中一个project不能导入,出现:无法读取文件 cuda8.0.props错误,问题:新的win10 系统安装的CUDA是10.1版本,应该安装cuda8.0版本;解决:安装cuda8.0,可以和cuda10并存,安装时候不要安装驱动程序....原创 2020-08-02 21:00:59 · 376 阅读 · 0 评论 -
使用Eric构建Caffe应用程序-Baby年龄识别
训练好的Caffe网络结构,可以固定下来,直接载入程序作为数据库接口使用。本文使用Eric构建运行于Python环境下的图片识别应用程序。若从0开始,一般可以使用最简单的六层网络,使用Caffe可以仅配置参数就可以构建简单的CNN,一般的六层网络是这样设置的:InPut——>Conv层——>Pooling层——>Conv层——> Pooling层/ ReLU整流层+pooling层——>全链接层——>softMax层——>输出类别概率。原创 2015-04-09 17:34:02 · 1131 阅读 · 0 评论 -
Caffe2:ubuntu修改链接方式ln
sudo ln -s /usr/local/cuda-8.0 cuda则重新建立指向cuda-8.0的cuda文件件超链接原创 2018-01-30 10:55:24 · 1315 阅读 · 0 评论 -
Caffe2:添加CUDA路径
需要添加lib库路径: 在 /etc/ld.so.conf.d/加入文件 cuda.conf原创 2018-01-30 15:12:00 · 3355 阅读 · 0 评论 -
Caffe2:python -m caffe2.python.operator_test.relu_op_test
1. 进行语句测试时候,出现问题, 设置环境变量CUDA_VISIBLE_DEVICES参考: cuda设置指定可见方法 在/etc/profile文件或者~/.bashrc末尾添加以下行: export CUDA_VISIBLE_DEVICES=0,1 ##仅显卡设备0,1GPU可见。可用的GPU可通过nvidia-smi -L命令查看2原创 2018-01-30 16:01:29 · 1035 阅读 · 0 评论 -
NVIDIA各个领域芯片现阶段的性能和适应范围
NVIDIA作为老牌显卡厂商,在AI领域深耕多年。功夫不负有心人,一朝AI火,NVIDIA大爆发,NVIDIA每年送给科研院所和高校的大量显卡,大力推广Physix和CUDA,终于钓了产业的大鱼。 由弱到强理一下NVIDIA的现有产品线,在AMD锐龙发力之后,NVIDIA已经取代Intel,称为新的牙膏厂。 在与人工智能与机器人有关的平台上,NVIDAI产品线...原创 2018-03-16 11:49:24 · 3292 阅读 · 0 评论 -
tensorflow.python.framework.errors_impl.NotFoundError: libnvinfer.so.5: cannot open shared object fi
Eclipse在使用Tensorflow-CUDA10 的时候,出现错误;参考链接:https://blog.csdn.net/qq_20373723/article/details/80065936官方文档:https://docs.nvidia.com/deeplearning/sdk/tensorrt-install-guide/index.html#downloading ...转载 2019-05-06 11:39:02 · 3724 阅读 · 0 评论 -
Ubuntu: ldconfig(解决*.so不是符号连接)
文链: https://blog.csdn.net/hjxu2016/article/details/69389597在sudo ldconfig时遇到usr/local/cuda-8.0/lib64/libcudnn.so.5 不是符号连接的问题,解决办法也很简单,重新建立链接并删除原链接首先找到usr/local/cuda-8.0/lib64/目录,搜索 libcudnn 然...转载 2019-06-12 14:55:23 · 7139 阅读 · 0 评论 -
Nvidia: Mx150 CUDA10安装驱动
参考这个:GeForce MX150显卡+Ubuntu16.04安装NVIDIA驱动+CUDA9.0+cuDNN7.0.51.下载合适版本的最合适的驱动 我的是430的驱动CUDA支持版本的对应列表:CUDA 版本,显卡驱动,Ubuntu版本,GCC版本之间的对应关系2.sudo apt-get purge nvidia*lsmod | grep nou...转载 2019-07-10 10:12:15 · 5452 阅读 · 0 评论 -
使用PCL::GPU::遇到问题
一:使用GPU进行点云分割,理论上可以极大地加快分割速度;于是对PCL1.7.1进行了编译,回到32位。这难道是显卡驱动有问题?还是CUDA有问题,我只能孤独地在黑夜里提心吊胆地摸索着前行,一步一磕绊,痛苦不堪.....路慢慢其修远兮,不想探索了!!!先放下,哪天想起来或者发现自己的错误在哪里了,再回头解决.原创 2014-04-23 15:38:48 · 7915 阅读 · 7 评论 -
cannot find Toolkit in /usr/local/cuda-8.0
使用apt-get进行安装sudo apt install nvidia-cuda-toolkit原创 2017-05-27 17:37:33 · 7723 阅读 · 0 评论 -
编译OpenCV遇到Qmake问题
Ubuntu安装OpenCv,出现:qmake: could not exec '/usr/lib/x86_64-linux-gnu/qt4/bin/qmake': No such file or directory原创 2015-04-02 16:16:36 · 2032 阅读 · 0 评论 -
Caffe: Vs13添加CUDA支持
右键工程点击:Building Dependency右击:Build Customizations点击选项:CUDA 7.5原创 2016-07-11 18:43:08 · 956 阅读 · 0 评论 -
避免关注底层硬件,Nvidia将机器学习与GPU绑定
近日,通过释放一组名为cuDNN的库,Nvidia将GPU与机器学习联系的更加紧密。据悉,cuDNN可以与当下的流行深度学习框架直接整合。Nvidia承诺,cuDNN可以帮助用户更加聚焦深度神经网络,避免在硬件性能优化上的苦工。当下,深度学习已经被越来越多的大型网络公司、研究员,甚至是创业公司用于提升AI能力,代表性的有计算机视觉、文本检索及语音识别。而包括计算机视觉等流行的领域都使用了图形处理单元(GPU),因为每个GPU都包含了上千的核心,它们可以加快计算密集型算法。转载 2015-03-30 11:47:01 · 941 阅读 · 0 评论 -
ubuntu 安装 OpenCV-CUDA
0.这个尽量不要手动安装, Github上有人已经写好了完整的安装脚本:https://github.com/jayrambhia/Install-OpenCV原创 2015-03-30 17:22:22 · 1995 阅读 · 0 评论 -
CUDA 编程实例:计算点云法线
简介:CUDA ,MPI,Hadoop都是并行运算的工具。CUDA是基于NVIDIA GPU芯片计算。阐述:GPU有很多个核(几百个),每个核可以跑一个线程,多个线程组成一个单位叫做块。举个例子:有三个向量 int a, b, c; 我们要计算a和b的向量之和存放到c中。一般C语言:for(int i=0; iCUDA编程做法:GPU中的每个线程(核)有一个独立序号原创 2014-01-09 17:02:04 · 3729 阅读 · 0 评论 -
CUDA5.5入门文章:VS10设置
在开始学习之前,首先要做的就是找到一本好的教材,要知道一本好的教材可以让我们更加轻松地入门。在看了一些个CUDA编程相关的教材之后,我向大家推荐的一本教材叫做《GPU高性能编程CUDA实战》。本教材相比其他的教材而言,它讲得比较细,对于一些我们可能不太明白的知识点做了详细的说明。而且这本教材以层层深入的方式向我们展示了GPU的世界,从而引领我们进入CUDA编程的大门。 其他的教材的转载 2013-12-31 09:59:58 · 2734 阅读 · 0 评论 -
OpenCV中GPU模块使用
CUDA IT168的文章系列:文章有代码CUDA基本使用方法在介绍OpenCV中GPU模块使用之前,先回顾下CUDA的一般使用方法,其基本步骤如下:1.主机代码执行;2.传输数据到GPU;3.确定转载 2013-12-31 16:38:20 · 1238 阅读 · 0 评论 -
CPU+GPU异构计算完全解析
工欲善其事,必先利其器。有一个好的计算工具是必须的!并行计算:让处理的速度变得更快: 相对于串行计算,并行计算可以划分成时间并行和空间并行。时间并行即流水线技术,空间并行使用多个处理器执行并发计算,当前研究的主要是空间的并行问题。以程序和算法设计人员的角度看,并行计算又可分为数据并行和任务并行。数据并行把大的任务化解成若干个相同的子任务,处理起来比任务并行简单。转载 2013-12-31 16:31:08 · 11875 阅读 · 0 评论 -
CUDA知识普及
IT168 CUDA专题: http://www.it168.com/tag/3263_1.shtml异构技术构建云计算平台:http://tech.it168.com/a2011/1215/1289/000001289157.shtmlGPU优化与实例分析:http://tech.it168.com/a2011/1215/1289/000001289225.shtml原创 2013-12-31 16:43:39 · 1025 阅读 · 0 评论 -
图像局部显著性—点特征(SiftGPU)
SIFT的计算复杂度较高。SiftGpu的主页:SiftGPU: A GPU Implementation of ScaleInvariant Feature Transform (SIFT)原创 2017-03-27 17:04:48 · 2069 阅读 · 2 评论 -
SiftGPU:编译SiftGPU出现问题-无法解析的外部符号 glutInit
SiftGPU的原始库可以编译通过。但不能使用,在使用时引出了一连串96个编译错误。原创 2017-04-05 10:23:43 · 2035 阅读 · 1 评论 -
nvcc fatal : Unsupported gpu architecture 'compute_11'
使用VS编译OpenCV编译源代码时候,对Cmake生成的工程文件编译,会出现 nvcc fatal : Unsupported gpu architecture 'compute_11' 问题。原因是CUDA7.5不支持较为古老的显卡版本,因此1.1,2.0,2.1,之类的显卡选项是多余的。原创 2017-03-20 16:44:31 · 7666 阅读 · 0 评论 -
使用Caffe预测遇到的问题
在使用网络预测图像时,prediction = net.predict( [input_image] )出现: net.image_dims[0] 不是整数情况,原创 2015-04-07 14:06:55 · 4160 阅读 · 0 评论 -
DL for Vision:A Tutorial with Caffe 报告笔记
对机器学习、深度学习的一些介绍,包括若干深度学习的经典模型; Caffe 的 优势 (模块化、速度、社区支持等)、 基本结构 (网络定义、层定义、Blob等)和 用法 (模型中损失函数、优化方法、共享权重等的配置、应用举例、参数调优的技巧),以及 未来方向 (CPU/GPU 并行化、Pythonification、Fully Convolutional Networks等)。转载 2015-03-31 17:34:13 · 850 阅读 · 0 评论 -
组装自己的tesla超级计算机
原文链接:NVIDIA链接:http://www.nvidia.cn/object/tesla_build_your_own_cn.html转载 2014-08-13 08:34:43 · 2615 阅读 · 0 评论