wishchinYang的专栏

生死去留,蓬头傀儡;一时线断,落落磊磊!不创造知识,只是知识的搬运工!...

排序:
默认
按更新时间
按访问量

AI:IPPR的数学表示-CNN复杂结构进化(Mobile、xception、Shuffle、SE、Dilated、Deformable)

  接上一篇:AI:IPPR的数学表示-CNN复杂结构进化(Alex、ZF、Inception、Res、InceptionRes)。                        前言:AutoML-NasNet         VGG结构和INception结构、ResNet基元结构的出现,验证...

2018-05-11 15:39:19

阅读数:80

评论数:0

DeepMind:所谓SACX学习范式

           机器人是否能应用于服务最终还是那两条腿值多少钱,而与人交互,能真正地做“服务”工作,还是看那两条胳膊怎么工作。大脑的智能化还是非常遥远的,还是先把感受器和效应器做好才是王道。           关于强化学习,根据Agent对策略的主动性不同划分为主动强化学习(学习策略:必须...

2018-03-26 11:01:30

阅读数:61

评论数:0

| 一文读懂迁移学习(附学习工具包)

          当一个CNN用于另一个领域,就使用到了迁移学习。迁移学习是一种用于模型领域泛化和扩展的工具。          文章链接:独家 | 一文读懂迁移学习(附学习工具包)          参考:当深度学习成为过去,迁移学习才是真正的未来?           知乎:什么是迁移学习?...

2018-03-15 17:24:29

阅读数:61

评论数:0

OpenCV:使用OpenCV3随机森林进行统计特征多类分析

CNN作为图像识别和检测器,在分析物体结构分布的多类识别中具有绝对的优势。通多多层卷积核Pooling实现对物体表面分布的模板学习,以卷积核的形式存储在网络中。而对于统计特征,暂时没有明确的指导规则。 opencv3中的ml类与opencv2中发生了变化,下面列举opencv3的机器学习类方法实例...

2017-11-29 11:00:47

阅读数:501

评论数:0

Windows下使用Caffe-Resnet

编译历程参考:CNN:Windows下编译使用Caffe和Caffe2 caffe的VS版本源代码直接保留了sample里面的shell命令,当然这些shell命令在Windows平台下是不能运行的,需要稍微修改一下,转换为CMD可以理解的脚本代码。

2017-09-24 16:14:27

阅读数:557

评论数:0

推荐系统:MovivLens20M数据集解析

此数据集描述了5星之内的电影不受限制的标记,用于给出用户推荐。数据集包含了138493个用户对27278个电影的20000263个评分和465564个标签。此评价收集于1995年1月到2015年3月之间,并在2016年10月17日更新为csv格式。 用户为随机选取,每个选取的用户至少评分20个电影...

2017-09-22 10:59:02

阅读数:420

评论数:0

CNN:Windows下编译使用Caffe和Caffe2

       用于检测的CNN分为基于回归网络的方法和基于区域+CNN网络的方法,其中基于回归网络的方法典型为YOLO9000,可以兼容使用VGG-Net框架。其中基于区域+CNN网络方法,大量使用了Caffe作为基础CNN框架。 准备工作(python27环境,X64平台,使用Vs2013和Vs...

2017-09-14 14:28:31

阅读数:4419

评论数:1

End to End Sequence Labeling via Bi-directional LSTM CNNs CRF

来看看今日头条首席科学家的论文: End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF 使用LSTM方法进行序列标注,完成大规模标注问题

2017-05-09 11:54:46

阅读数:735

评论数:0

机器学习:随机森林RF-OBB袋外错误率

构建随机森林的一个关键问题就是如何选择最优的m,要解决这个问题主要依据计算袋外错误率oob error。 而一般的方法是,特征的维数是先确定的。更多的是对随机森林本身参数的选择,比如随机深林的层数,和树木的个数。

2016-09-12 17:40:58

阅读数:4434

评论数:0

EnforceLearning-主动强化学习

被动学习Agent由固定的策略决定其行为。主动学习Agent必须自己决定采取什么行动。

2016-06-04 14:11:49

阅读数:1327

评论数:0

EnforceLearning-被动强化学习

本章主要讲Agent如何从成功与失败中、回报与惩罚中进行学习。

2016-06-02 13:19:28

阅读数:1268

评论数:0

AdaBoost--从原理到实现(Code:Python)

对于Adaboost,可以说是久闻大名,据说在Deep Learning出来之前,SVM和Adaboost是效果最好的 两个算法,而Adaboost是提升树(boosting tree),所谓“提升树”就是把“弱学习算法”提升(boost)为“强学习算法

2016-05-18 19:15:35

阅读数:6720

评论数:1

DNN:逻辑回归与 SoftMax 回归方法

为什么使用SoftMax方法:因为反向传播和更新方法简单,更直接且直观。 对于多类分类问题,是建立一个 软回归分类器还是建立多个二分类器呢?这依赖于你的多类是否互斥,软回归 分类器对集合的分类是划分而不是覆盖。 ................... 考虑一个计算机视觉的问题,如果你对图像分类 ,...

2016-05-18 18:59:20

阅读数:6275

评论数:0

时序分析:KMP算法用于序列识别

kmp算法是一个效率非常高的字符串匹配算法。不过由于其难以理解,所以在很长的一段时间内一直没有搞懂。虽然网上有很多资料,但是鲜见好的博客能简单明了地将其讲清楚。在此,综合网上比较好的几个博客(参见最后),尽自己的努力争取将kmp算法思想和实现讲清楚。

2015-09-11 12:23:32

阅读数:722

评论数:0

ANN:DNN结构演进History—RNN

RNN通过引入神经元定向循环用于处理边变长问题,由此被称为递归网络; 再通过其他神经元(如果有自我连接则包括自身)的输入和当前值的输入,进行加权求和(logit)之后重新计算出新的行为,保存之前记忆。 通过时间轴展开成类似于FNN的新构架,因此可以使用BP算法进行网络训练; 而根据时间展开长序列会...

2015-08-24 11:56:15

阅读数:1315

评论数:0

OpenCV:使用 随机森林与GBDT

随机森林顾名思义,是用随机的方式建立一个森林。简单来说,随机森林就是由多棵CART(Classification And Regression Tree)构成的。对于每棵树,它们使用的训练集是从总的训练集中有放回采样出来的,这意味着,总的训练集中的有些样本可能多次出现在一棵树的训练集中,也可能从未...

2015-06-16 16:33:25

阅读数:2136

评论数:1

Reducing the Dimensionality of Data with Neural Networks:神经网络用于降维

High-dimensional data can be converted to low-dimensional codes by training a multilayer neural network with a small central layer to reconstruct hig...

2015-04-26 20:18:39

阅读数:5683

评论数:0

DeepMind用ReinforcementLearning玩游戏

本文从图像级别进行游戏,跨过特征-规则-策略的显示分层,有一定的趣味性。 说到机器学习最酷的分支,非Deep learning和Reinforcement learning莫属(以下分别简称DL和RL)。这两者不仅在实际应用中表现的很酷,在机器学习理论中也有不俗的表现。DeepMind 工作人员合...

2015-01-05 17:05:37

阅读数:1204

评论数:1

PythonOpenCV--Rtrees随机森林

原文链接:Python opencv实现的手写字符串识别--SVM 神经网络 K近邻 Boosting、

2014-08-11 10:55:07

阅读数:1641

评论数:0

OnLineML:时序数据挖掘

关于时序分析: 我们跟随时间的脚步,试图解释现在、理解过去、甚至预测未来........ 时间序列是一种重要的高维数据类型,它是由客观对象的某个物理量在不同时间点的采样值按照时间先后次序排列而组成的序列,在经济管理以及工程领域具有广 泛 应用。 目前重点的研究内容包括时...

2014-07-16 19:04:32

阅读数:2285

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭