wishchinYang的专栏

生死去留,蓬头傀儡;一时线断,落落磊磊!不创造知识,只是知识的搬运工!...

排序:
默认
按更新时间
按访问量

AI:IPPR的数学表示-CNN稀疏结构进化(Mobile、xception、Shuffle、SE、Dilated、Deformable)

  接上一篇:AI:IPPR的数学表示-CNN复杂结构进化(Alex、ZF、Inception、Res、InceptionRes)。                        前言:AutoML-NasNet         VGG结构和INception结构、ResNet基元结构的出现,验证...

2018-05-11 15:39:19

阅读数:748

评论数:0

人工机器:人工智能中的机器学习方法

        人工智能的定义为基于表观的行为定义,即图灵测试,可以形式化为模式识别。智能从知识论的角度分析,归纳明确知识规则构建知识图谱系统形成专家系统,而通过数据获得归纳规则约束参数为机器学习系统,即基于数据的模式识别系统。大量的机器学习模型,可以抽象为特定形式的神经网络,处理输入数据为定长输...

2018-12-06 15:44:13

阅读数:142

评论数:0

DNN:LSTM的前向计算和参数训练

原文-LSTM的反向传播:深度学习(6)-长短期网路;此处仅摘抄一小段,建议拜访全文。 LSTM的参数训练:https://www.jianshu.com/p/dcec3f07d3b5;LSTM的参数训练和前向计算比RNNs还是稍微复杂一些。 长短时记忆网络的前向计算 前面描述的开关是怎样在...

2018-11-29 17:26:55

阅读数:19

评论数:0

EnforceLearning-迁移学习-监督训练与非监督训练

前言         CNN刷分ImageNet以来,迁移学习已经得到广泛的应用,不过使用ImageNet预训练模型迁移到特定数据集是一个全集到子集的迁移,不是标准定义的迁移学习。         迁移学习(Transfer Learning,TL)对于人类来说,就是掌握举一反三的学习能力。比...

2018-11-27 17:55:21

阅读数:65

评论数:0

OCR算法:CNN+BLSTM+CTC架构(VS15)

原文链接:OCR算法-CNN+BLSTM+CTC架构 由于作者使用了Boost1.57-Vc14,而1.57的VC14版本作者没有给出下载链接,因此需要自行编译,建议换掉作者的第三方库,使用其他的库,比如:这篇文章:VS编译Caffe非常简单。网盘:3rdlibVC14。 有少量的改动,如有疑...

2018-08-30 17:03:40

阅读数:327

评论数:0

DNN结构:CNN、LSTM/RNN中的Attention结构

前言        attention作为一种机制,有其认知神经或者生物学原理: 注意力的认知神经机制是什么?        如何从生物学的角度来定义注意力?        大多数attention (gating) 技巧都可以直接加入现有的网络架构,通过合理设计初始化和训练步骤也可以利...

2018-07-06 16:48:01

阅读数:2056

评论数:0

个人技术博客的选择:CSDN、博客园、简书、知乎专栏还是Github Page?

文章链接:个人技术博客的选择:CSDN、博客园、简书、知乎专栏还是Github Page? 感觉还是Fuck The Dog!看来还是以后把文章写在本地,然后再上传到CSDN吧。被CSDN的缓存机制坑了几次,得非常注意这次事件才行!!!...

2018-06-19 17:21:50

阅读数:3114

评论数:0

博客需要搬家

太他nia的垃圾了,写完之后点击发布,只保留了前一段,后面的长篇大论全都没了,感情是自动保存草稿的那一段,其他的呢。其他的呢?本地的没有上传上去,这个缓存机制有很大问题,太恶心人了!转移到其他地方吧................

2018-06-19 16:54:51

阅读数:597

评论数:0

Learning Face Age Progression: A Pyramid Architecture of GANs

前言       作为IP模式识别的CNN初始模型是作为单纯判别式-模式识别存在的,并以此为基本模型扩展到各个方向。基本功能为图像判别模型,此后基于Loc+CNN的检测模型-分离式、end2end、以及MaskCNN模型,而后出现基于CNN的预测模型-AcGans。       CNN作为一个基本...

2018-06-19 16:40:44

阅读数:685

评论数:0

预测学习:深度生成式模型、DcGAN、应用案例、相关paper

         大模型需要更大量的数据,用以拟合更复杂的假设空间。GAN本身可以用于生成数据,在GAN的学习过程中隐藏了弱监督学习和增强学习的思想。下文主要是对GAN应用于NLP进行相关分析,配图不错,摘抄下来,删除掉关于NLP的部分。本文有大量修改,如有疑虑,请移步原文。       文章:深...

2018-06-05 15:08:54

阅读数:1123

评论数:0

DeepMind:所谓SACX学习范式

           机器人是否能应用于服务最终还是那两条腿值多少钱,而与人交互,能真正地做“服务”工作,还是看那两条胳膊怎么工作。大脑的智能化还是非常遥远的,还是先把感受器和效应器做好才是王道。           关于强化学习,根据Agent对策略的主动性不同划分为主动强化学习(学习策略:必须...

2018-03-26 11:01:30

阅读数:122

评论数:0

| 一文读懂迁移学习(附学习工具包)

          当一个CNN用于另一个领域,就使用到了迁移学习。迁移学习是一种用于模型领域泛化和扩展的工具。          文章链接:独家 | 一文读懂迁移学习(附学习工具包)          参考:当深度学习成为过去,迁移学习才是真正的未来?           知乎:什么是迁移学习?...

2018-03-15 17:24:29

阅读数:563

评论数:0

OpenCV:使用OpenCV3随机森林进行统计特征多类分析

CNN作为图像识别和检测器,在分析物体结构分布的多类识别中具有绝对的优势。通多多层卷积核Pooling实现对物体表面分布的模板学习,以卷积核的形式存储在网络中。而对于统计特征,暂时没有明确的指导规则。 opencv3中的ml类与opencv2中发生了变化,下面列举opencv3的机器学习类方法实例...

2017-11-29 11:00:47

阅读数:916

评论数:0

Windows下使用Caffe-Resnet

编译历程参考:CNN:Windows下编译使用Caffe和Caffe2 caffe的VS版本源代码直接保留了sample里面的shell命令,当然这些shell命令在Windows平台下是不能运行的,需要稍微修改一下,转换为CMD可以理解的脚本代码。

2017-09-24 16:14:27

阅读数:937

评论数:0

推荐系统:MovivLens20M数据集解析

此数据集描述了5星之内的电影不受限制的标记,用于给出用户推荐。数据集包含了138493个用户对27278个电影的20000263个评分和465564个标签。此评价收集于1995年1月到2015年3月之间,并在2016年10月17日更新为csv格式。 用户为随机选取,每个选取的用户至少评分20个电影...

2017-09-22 10:59:02

阅读数:1158

评论数:0

CNN:Windows下编译使用Caffe和Caffe2

       用于检测的CNN分为基于回归网络的方法和基于区域+CNN网络的方法,其中基于回归网络的方法典型为YOLO9000,可以兼容使用VGG-Net框架。其中基于区域+CNN网络方法,大量使用了Caffe作为基础CNN框架。 准备工作(python27环境,X64平台,使用Vs2013和Vs...

2017-09-14 14:28:31

阅读数:7096

评论数:5

End to End Sequence Labeling via Bi-directional LSTM CNNs CRF

来看看今日头条首席科学家的论文: End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF 使用LSTM方法进行序列标注,完成大规模标注问题

2017-05-09 11:54:46

阅读数:1054

评论数:0

OpenCV:OpenCV目标检测Boost方法单独训练

        在古老的CNN方法出现以后,并不能适用于图像中目标检测。20世纪60年代,Hubel和Wiesel( 百度百科 )在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的网络结构可以有效地降低反馈神经网络的复杂性,继而提出了卷积神经网络(Convolutional Neura...

2017-03-22 13:05:19

阅读数:1026

评论数:0

机器学习:随机森林RF-OBB袋外错误率

构建随机森林的一个关键问题就是如何选择最优的m,要解决这个问题主要依据计算袋外错误率oob error。 而一般的方法是,特征的维数是先确定的。更多的是对随机森林本身参数的选择,比如随机深林的层数,和树木的个数。

2016-09-12 17:40:58

阅读数:7344

评论数:0

EnforceLearning-主动强化学习

前言:          被动学习Agent由固定的策略决定其行为。主动学习Agent必须自己决定采取什么行动。         具体方法是:              Agent将要学习一个包含所有行动结果概率的完整模型,而不仅仅是固定策略的模型;             接下来,Age...

2016-06-04 14:11:49

阅读数:1572

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭