wishchinYang的专栏

生死去留,蓬头傀儡;一时线断,落落磊磊!不创造知识,只是知识的搬运工!...

排序:
默认
按更新时间
按访问量

AI:IPPR的数学表示-CNN稀疏结构进化(Mobile、xception、Shuffle、SE、Dilated、Deformable)

  接上一篇:AI:IPPR的数学表示-CNN复杂结构进化(Alex、ZF、Inception、Res、InceptionRes)。                        前言:AutoML-NasNet         VGG结构和INception结构、ResNet基元结构的出现,验证...

2018-05-11 15:39:19

阅读数:236

评论数:0

个人技术博客的选择:CSDN、博客园、简书、知乎专栏还是Github Page?

文章链接:个人技术博客的选择:CSDN、博客园、简书、知乎专栏还是Github Page? 感觉还是Fuck The Dog!看来还是以后把文章写在本地,然后再上传到CSDN吧。被CSDN的缓存机制坑了几次,得非常注意这次事件才行!!!...

2018-06-19 17:21:50

阅读数:221

评论数:0

博客需要搬家

太他nia的垃圾了,写完之后点击发布,只保留了前一段,后面的长篇大论全都没了,感情是自动保存草稿的那一段,其他的呢。其他的呢?本地的没有上传上去,这个缓存机制有很大问题,太恶心人了!转移到其他地方吧................

2018-06-19 16:54:51

阅读数:62

评论数:0

Learning Face Age Progression: A Pyramid Architecture of GANs

前言       作为IP模式识别的CNN初始模型是作为单纯判别式-模式识别存在的,并以此为基本模型扩展到各个方向。基本功能为图像判别模型,此后基于Loc+CNN的检测模型-分离式、end2end、以及MaskCNN模型,而后出现基于CNN的预测模型-AcGans。       CNN作为一个基本...

2018-06-19 16:40:44

阅读数:101

评论数:0

预测学习、深度生成式模型、DcGAN、应用案例、相关paper

         大模型需要更大量的数据,用以拟合更复杂的假设空间。GAN本身可以用于生成数据,在GAN的学习过程中隐藏了弱监督学习和增强学习的思想。下文主要是对GAN应用于NLP进行相关分析,配图不错,摘抄下来,删除掉关于NLP的部分。本文有大量修改,如有疑虑,请移步原文。       文章:深...

2018-06-05 15:08:54

阅读数:323

评论数:0

DeepMind:所谓SACX学习范式

           机器人是否能应用于服务最终还是那两条腿值多少钱,而与人交互,能真正地做“服务”工作,还是看那两条胳膊怎么工作。大脑的智能化还是非常遥远的,还是先把感受器和效应器做好才是王道。           关于强化学习,根据Agent对策略的主动性不同划分为主动强化学习(学习策略:必须...

2018-03-26 11:01:30

阅读数:70

评论数:0

| 一文读懂迁移学习(附学习工具包)

          当一个CNN用于另一个领域,就使用到了迁移学习。迁移学习是一种用于模型领域泛化和扩展的工具。          文章链接:独家 | 一文读懂迁移学习(附学习工具包)          参考:当深度学习成为过去,迁移学习才是真正的未来?           知乎:什么是迁移学习?...

2018-03-15 17:24:29

阅读数:76

评论数:0

OpenCV:使用OpenCV3随机森林进行统计特征多类分析

CNN作为图像识别和检测器,在分析物体结构分布的多类识别中具有绝对的优势。通多多层卷积核Pooling实现对物体表面分布的模板学习,以卷积核的形式存储在网络中。而对于统计特征,暂时没有明确的指导规则。 opencv3中的ml类与opencv2中发生了变化,下面列举opencv3的机器学习类方法实例...

2017-11-29 11:00:47

阅读数:556

评论数:0

Windows下使用Caffe-Resnet

编译历程参考:CNN:Windows下编译使用Caffe和Caffe2 caffe的VS版本源代码直接保留了sample里面的shell命令,当然这些shell命令在Windows平台下是不能运行的,需要稍微修改一下,转换为CMD可以理解的脚本代码。

2017-09-24 16:14:27

阅读数:609

评论数:0

推荐系统:MovivLens20M数据集解析

此数据集描述了5星之内的电影不受限制的标记,用于给出用户推荐。数据集包含了138493个用户对27278个电影的20000263个评分和465564个标签。此评价收集于1995年1月到2015年3月之间,并在2016年10月17日更新为csv格式。 用户为随机选取,每个选取的用户至少评分20个电影...

2017-09-22 10:59:02

阅读数:483

评论数:0

CNN:Windows下编译使用Caffe和Caffe2

       用于检测的CNN分为基于回归网络的方法和基于区域+CNN网络的方法,其中基于回归网络的方法典型为YOLO9000,可以兼容使用VGG-Net框架。其中基于区域+CNN网络方法,大量使用了Caffe作为基础CNN框架。 准备工作(python27环境,X64平台,使用Vs2013和Vs...

2017-09-14 14:28:31

阅读数:4851

评论数:1

End to End Sequence Labeling via Bi-directional LSTM CNNs CRF

来看看今日头条首席科学家的论文: End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF 使用LSTM方法进行序列标注,完成大规模标注问题

2017-05-09 11:54:46

阅读数:778

评论数:0

机器学习:随机森林RF-OBB袋外错误率

构建随机森林的一个关键问题就是如何选择最优的m,要解决这个问题主要依据计算袋外错误率oob error。 而一般的方法是,特征的维数是先确定的。更多的是对随机森林本身参数的选择,比如随机深林的层数,和树木的个数。

2016-09-12 17:40:58

阅读数:4952

评论数:0

EnforceLearning-主动强化学习

被动学习Agent由固定的策略决定其行为。主动学习Agent必须自己决定采取什么行动。

2016-06-04 14:11:49

阅读数:1363

评论数:0

EnforceLearning-被动强化学习

本章主要讲Agent如何从成功与失败中、回报与惩罚中进行学习。

2016-06-02 13:19:28

阅读数:1299

评论数:0

AdaBoost--从原理到实现(Code:Python)

对于Adaboost,可以说是久闻大名,据说在Deep Learning出来之前,SVM和Adaboost是效果最好的 两个算法,而Adaboost是提升树(boosting tree),所谓“提升树”就是把“弱学习算法”提升(boost)为“强学习算法

2016-05-18 19:15:35

阅读数:6998

评论数:1

DNN:逻辑回归与 SoftMax 回归方法

为什么使用SoftMax方法:因为反向传播和更新方法简单,更直接且直观。 对于多类分类问题,是建立一个 软回归分类器还是建立多个二分类器呢?这依赖于你的多类是否互斥,软回归 分类器对集合的分类是划分而不是覆盖。 ................... 考虑一个计算机视觉的问题,如果你对图像分类 ,...

2016-05-18 18:59:20

阅读数:6482

评论数:0

时序分析:KMP算法用于序列识别

kmp算法是一个效率非常高的字符串匹配算法。不过由于其难以理解,所以在很长的一段时间内一直没有搞懂。虽然网上有很多资料,但是鲜见好的博客能简单明了地将其讲清楚。在此,综合网上比较好的几个博客(参见最后),尽自己的努力争取将kmp算法思想和实现讲清楚。

2015-09-11 12:23:32

阅读数:733

评论数:0

ANN:DNN结构演进History—RNN

RNN通过引入神经元定向循环用于处理边变长问题,由此被称为递归网络; 再通过其他神经元(如果有自我连接则包括自身)的输入和当前值的输入,进行加权求和(logit)之后重新计算出新的行为,保存之前记忆。 通过时间轴展开成类似于FNN的新构架,因此可以使用BP算法进行网络训练; 而根据时间展开长序列会...

2015-08-24 11:56:15

阅读数:1417

评论数:0

OpenCV:使用 随机森林与GBDT

随机森林顾名思义,是用随机的方式建立一个森林。简单来说,随机森林就是由多棵CART(Classification And Regression Tree)构成的。对于每棵树,它们使用的训练集是从总的训练集中有放回采样出来的,这意味着,总的训练集中的有些样本可能多次出现在一棵树的训练集中,也可能从未...

2015-06-16 16:33:25

阅读数:2174

评论数:1

提示
确定要删除当前文章?
取消 删除
关闭
关闭