图像特征理论综述

前言:

        关于集合:在计算机科学领域,离散数学是非常重要的学科,在图像处理领域,这种重要性更加直观。

 

一:特征可靠性的来源:

1. 数据离散化:       

        系统观测理论:物理世界存在某一实体,若对其进行描述和解析,需要观测系统及系统所提供的接口。作为图像分析系统的接口,实现的功能是完成实体的图像化,即是实体的可视化。

        实体与人的视觉交互是其研究价值的根本,可视化是必须的;若实体不能具体可视化,即只可称之为数据,则可排斥出图像研究领域,即实体完整描述必须完成可视化。

        离散图像——图像可视化的实现:所有完成图像数据可视化的介质都只能完成图像数据离散的描述:古老的CRT为阴极射线激发荧光粉生成光斑点,画面本质上是离散的,CRT以推出大多数应用领域,可以暂且不谈;等离子为等离子激发稀有气体发射紫外线,紫外线激发荧光粉发出可见光,以粉为点;LED以液晶分子的阵列转换改变透视特性来显示色彩,图像描述为像素;OLED为有机自发光,以自发光有机分子作为原子像素。

        图像准确性:图像的介质转换以离散数据的方式进行,和图像真实定义(形状特性等)产生偏差,在信息接收到额过程中,再次从离散数据归结为图像数据,这个过程就是 拟合。对于拟合过程来说,拟合数据越多,拟合越精确,因此图像数据描述定义和显示设备 都进行着像素大战。

 

      可拟合性的基础:图像像素排列的硬规则。

      (1):图像的硬性规则描述

                 矢量图像:严格的说,矢量图像仅仅是一种图像数据描述,其可视化是其定义无法实现的。即矢量图像只给出了定义和方法级别的描述,而未给出其实现的描述。

                 点阵图像:图像的点阵排列规则是图像像素可拟合性的基础。

                       两种常用方式:正方形点阵和 六边形 蜂窝状点阵

                 蜂窝状点阵:优点是在描述线的相交时是无歧义的;确定是描述垂直时时有歧义的;

                 正方形点阵:虽然在描述线的相交时出现问题,但其对垂直的描述是 无歧义的,因此对正交可以很好的描述,与欧式空间坐标系更能相符合,为描述方式的主流。

      (2):正交离散坐标系

           正交离散坐标系为欧式离散坐标系,其可描述性为欧式离散空间,即多维整数空间,所有图像的描述最后必定归结为多维整数空间的描述。

     

2. 图像特征描述   

 

 (1):特征的直线特性:y=ax+b的参数描述,可以把直线的点集数据规约到二维,两条直线的距离 和相似度 表示为 两个方程的 距离和相似度。

                     S1:( f1: y=a1x+b1 )     S2: (f2: y=a2x+b2 )

                     Dis(S1,S2) ——>Dis(f1,f2)——>Dis( (a1,b1),   (a2,b2)  )  

           直线来源:点集的直线拟合。

           拟合准确性:拟合的方差和偏差等数值描述。

           特征准确性:集合到集合的距离表示为函数和函数的距离,如何保证这个映射的同态性。

 

(2):特征的曲线特性:y=a1x^n+ a2x^(n-1)......+ (aN-1) x + aN的参数描述,可以把直线的点集数据规约到N维,两条曲线的距离 和相似度 表示为 两个方程的 距离和相似度。          

          参考数值计算的相关知识...............

 

(3):二维图像特征描述:参考局部图像特征描述概述      

           图像在数学中的专业术语为二维张量,即可以嵌入二维欧式空间,表示为二维张量空间中的一个坐标。而图像特征典型为可以嵌入一维欧式空间中的N维向量,理解为对应了N维向量空间中的一个坐标。

           图像的特征提取过程,即是把二维图像从二维张量空间降维到一维向量空间,转化到N维向量空间,每个图像映射到N维向量空间的一个点上。这就带来了特征提取的本本质要求:压缩的近邻特性,即是在张量空间近似的图像其压缩映射到向量空间仍然保持近邻。

           这就表明了特征提取过程的数学描述:一个从二维张量空间到N维向量空间的hash映射,而且必定是压缩近邻hash的。

           这就隐含了特征提取的一般原则: 尺度不变性/相似性,旋转不变性/相似性,明暗不变性/相似性等要求。但也明确显示了一个特征提取的一般缺点:近邻hash映射的压缩损失。

           比如HOG特征提取的一般过程,对每个图片(假如64*40)块划分Cell和patch,在每一个cell里面计算梯度直方图,收集到一个1008维的特征向量里。依据特征提取的原理,相似图片的特征也必须相近。在计算HOG每个Cell直方图时,使用了梯度,这就保证了光线不变性和少量的旋转不变性。

           至于如何分类,那是模型的问题了,后面是适应某个问题的特定模型,比如SVM、RFs、logistics回归等。模型把N维向量再次压缩到0维空爱的离散个点上,完成分类识别。

           CNN走的更远,直接抛弃了图像信息从二维空间到向量空间的转换,这就直接舍弃了特征提取过程。直接使用Pooling和conv把图像从二维空间逐层变换,从N*N的图像,逐层压缩到二维空间的1*1的最终表示层,从二维空间直接跨越到0维。这就融合性地完成了传统方法特征提取和模型分类的整个过程。

 

3.三维图像特征

         三维图像在三维空间内进行表示,增加的纬度信息给图像特征提取开拓了空间,并降低了约束。对于可获得精确Z轴信息的三维图像,其特征缩放不变性即尺度 便不需要再考虑;其增加的Z轴信息,也使图像离散描述扩展到三维空间,特征提取面向于三维整数集合。

        

         图像三维特征综述:基于三维形状的三维图像检索

 

4.后记

         使用CNN对三维图像进行模式识别,是否该使用三维递进的网络结构呢?

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
多模态图像融合算法是指将来自不同传感器或不同模态的图像信息进行融合,以得到更全面、更准确的图像信息。下面是多模态图像融合算法的综述: 1. 基于像素级融合的算法:这类算法将不同模态的图像进行像素级别的融合,常见的方法有加权平均、最大值、最小值等。这些方法简单直观,但无法处理不同模态之间的非线性关系。 2. 基于特征级融合的算法:这类算法将不同模态的图像提取出的特征进行融合,常见的方法有主成分分析(PCA)、小波变换、稀疏表示等。这些方法可以捕捉到不同模态之间的相关性,但可能会丢失一些细节信息。 3. 基于深度学习的算法:近年来,深度学习在多模态图像融合中取得了显著的进展。通过使用卷积神经网络(CNN)或生成对抗网络(GAN),可以实现端到端的多模态图像融合。这些方法可以自动学习到不同模态之间的映射关系,并生成高质量的融合图像。 4. 基于图像分割的算法:这类算法将不同模态的图像进行分割,然后将分割结果进行融合。常见的方法有基于区域生长、基于图割、基于图像分割网络等。这些方法可以保留更多的细节信息,但对图像分割的准确性要求较高。 5. 基于模型的算法:这类算法通过建立数学模型来描述不同模态之间的关系,并利用模型进行融合。常见的方法有贝叶斯理论、马尔可夫随机场等。这些方法可以充分利用先验知识,但需要对模型进行合理假设。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值