原文:GENERATIVE AI AND PROMPT BASIS RULES FOR BEGINNERS
译者:飞龙
AI 模型人工智能是机器作为载体展示的人类智能,也称为机器智能(Machine Intelligence)。通过以符号为中心的逻辑推理、以问题解决为中心的探究和搜索、以数据驱动为中心的机器学习、以行为主义为中心的强化学习以及以博弈对抗为中心的决策等方法,可以实现对人类智能的模拟。本课程系统地介绍了人工智能的基本概念和算法,可以帮助学习者掌握人工智能的背景,体验其力量、赋能和赋权,并“知其意,明其理,顺其规,从其法”。课程内容包括人工智能概述、搜索与解决方案、逻辑与推理、监督学习、无监督学习、深度学习、强化学习和博弈对抗。来者不拒而不失时机;行者不迷而不失机遇。人工智能不仅仅是一门课程,更是第一手技术、产品或应用,而是一个具有深刻理论、充满活力的技术、产品落地的牵引力和社会应用赋能的综合生态系统(AI 生态系统)。为加强实践训练,课程安排了诸如以搜索与解决方案为核心的黑白棋 AI 算法、以线性回归为核心的图像恢复、以深度学习为核心的垃圾分类等实用训练主题。AI 模型包括:
- 决策树
决策树采用树形结构构建决策模型,基于数据的属性对数据进行分类。在逐步响应的过程中,典型的决策树分析将使用层次变量或决策节点。分类和回归问题经常使用决策树方法解决。以购买服装为例,首先确定是否喜欢,如果不喜欢就不买,如果喜欢就看价格,如果价格不合适就不买,如果方便就看是否有合适的尺码,如果没有合适的尺码就不买,如果有就购买。基于以上选择,可以绘制一个简单的树桩结构。场景示例:基于规则的信用评估,赛马结果预测优势:擅长评估不同特征、品质、人、地点、事物的特征常见相关算法:分类与回归树(CART),ID3(迭代二叉树 3),GBDT,C4.5,卡方自动交互检测(CHAID),决策树桩,随机森林(Random Forest),多元自适应回归样条(MARS),梯度提升机(GBM)随机森林:随机森林算法通过使用随机选择的数据子集和多个树来提高决策树的准确性。优点:随机森林方法已被证明对于大型数据集和具有大量甚至有时是无关特征的项目非常有用
- 回归算法
回归算法通过测量误差来探索变量之间的关系,并可以概述因变量与一个或多个自变量之间的状态关系。回归算法可用于区分垃圾邮件和非垃圾邮件。典型标准包括普通最小二乘法,线性回归,逻辑回归,逐步回归,多元自适应回归样条,局部散点平滑估计(局部估计散点平滑)场景示例:道路交通流量分析,电子邮件过滤优势:回归可用于识别变量之间的连续关系,即使连接并不明显
- 基于核函数的学习算法
最著名的基于核的算法是支持向量机(SVM)。基于核的算法将输入数据映射到更高维的向量空间,其中一些分类或回归问题可以更容易地解决。标准算法包括支持向量机(Support Vector Machine, SVM),径向基函数(Radial Basis Function, RBF),线性判别分析(Linear Discriminate Analysis, LDA)。进一步阅读基于核函数的学习算法
- 基于示例的算法
它经常用于构建决策问题的模型。例如,决策树方法经常解决分类和回归问题。通过这种方式,找到最佳匹配。标准算法包括 k-最近邻(KNN)、学习向量量化(LVQ)和自组织映射(SOM)。
- 神经网络
神经网络也是一种分类器。它是由许多虚拟神经元组成的网络。我们可以将一个神经元视为一个分类器,而许多神经元组成的网络可以多次对样本进行分类。CNN(卷积神经网络)是一种前馈神经网络。其人工神经元可能对覆盖区域内的附近单元做出响应,在大规模图像处理方面表现良好。优点:卷积神经网络在存在大型数据集、大量特征和复杂分类任务时非常有帮助。场景示例:图像识别、文本转语音、药物发现、照片滤镜、人脸识别、无人驾驶汽车等。RNN(循环神经网络)在任何神经网络中,每个神经元通过一个或多个隐藏层将许多输入转换为单个输出。循环神经网络(RNN)逐层传递值,使逐层学习成为可能。换句话说,RNN 具有某种形式的记忆,允许先前的输出影响后续的输入。循环神经网络是人工神经网络的一个通用术语,包括时间循环神经网络(循环神经网络)和结构递归神经网络(递归神经网络)。时间循环神经网络神经元之间的连接是一个有向图,而结构循环神经网络利用类似的神经网络结构递归构建更复杂的深度网络。这两种训练的算法不同,但属于同一算法变体。基于 RNN,派生出了诸如 LSTM(长短期记忆)和 GRU(门控循环单元)等算法。这些算法可以记住过去,因此可以用于处理具有时间序列属性的一些数据。因此,在处理语言、文本等方面具有独特优势。LSTM 和 GRU 具有其他循环神经网络的相同优点,但更常用,因为它们具有更好的记忆能力。优点:循环神经网络在存在大量有序信息时具有预测能力。场景示例:图像分类和字幕添加、政治情绪分析、对话机器人、机器翻译、讯飞的自然语言识别、文章编辑等。
- Yebeis 算法
贝叶斯是一个定理,意味着当你无法准确了解一件事物的本质时,可以依靠与该物品特定属性相关的事件发生来判断其本质属性的概率。当我们发现几个这样的特征,然后将这些特征结合起来使用时,我们可以考虑它们。常见的算法包括朴素贝叶斯算法、平均单依赖估计器(AODE)和贝叶斯信念网络(BBN)。例如,要识别一封电子邮件是否为垃圾邮件。我们可以随机选择 100 封垃圾邮件并分析它们的特征。我们发现单词“cheap”频繁出现,并且这个词在这 100 封垃圾邮件中出现了 40 次。然后我们使用这种认知得出结论:如果有“cheap”,那么这封邮件是垃圾邮件的概率为 40%。优点:朴素贝叶斯可以快速对具有显著特征的相关对象进行分类。场景示例:情感分析、消费者分类
- 聚类
聚类是一种无监督学习形式。简单来说,它是通过连续迭代计算将数据分成几组,使得该组中的所有数据相似,而不同组之间的数据并不相同。聚类技术通常集成输入数据中心或层次结构。聚类技术通常集成输入数据中心或层次结构。它可以用于图像分类识别、用户行为识别、用户画像等领域。标准算法包括 k-Means 和期望最大化算法(Expectation Maximization, EM)。
- 强化学习模型
在没有任何答案的情况下,首先尝试一些尝试,并通过从步骤中获得的奖励来确定努力是否正确。这一系列尝试用于不断调整和优化算法。最终,算法知道在特定情况下,可以采取行动以获得最佳结果。其本质是解决“决策问题”,即学会自动做出决策,并在做出连续决策并获得反馈后获得最佳结果。例如,猴子“学会”做算术如上述问题。
- 集成学习模型
在相同数据上独立训练各种相对较弱的学习模型,然后将结果合并进行整体预测。集成算法的关键挑战在于确定要连接哪些独立且更脆弱的学习模型以及如何整合学习结果。我们希望创建在机器学习的各个方面表现更好的模型。但现实往往是,我们的模型有偏好,可能只在特定情况下表现更好。因此,现在,我们希望结合几个这样的模型以获得更好和更全面的模型。这种方法被称为集成学习。常见的算法包括 Boosting、Bootstrapped Aggregation(Bagging)、AdaBoost、Stacked Generalization(Blending)、Gradient Boosting Machine(GBM)和 Random Forest。
自然语言处理(NLP):是什么以及基本规则
什么是 NLPNLP(自然语言处理)是人工智能的一个分支,专注于教计算机理解人类语言,以便分析并将其用于执行特定任务。自然语言处理(NLP)是一种技术,允许计算机“理解”自然语言,即人们说话和写作的方式。为了构建能够分析和理解人类语言的算法和模型,NLP 采用语言处理技术,如文本分割、句法分析、语义分析和文本生成。这使得计算机可以被编程执行诸如机器翻译、自然语言解释、文本生成、文本分类和信息提取等任务。NLP 是一项迅速发展的技术,对许多行业产生重大影响,包括数据处理、网络安全、电子商务、医疗保健等。希望这个解释有帮助!NLP 采用各种计算方法和概念来帮助计算机解释人类语言。首先,书面或口头短语通过一种称为“预处理”的过程进行处理,其中会去除不必要的填充词、标点符号和其他特征。随后,经过预处理的文本通过“句法分析”和“语义分析”技术进行更彻底的分析。句法分析涉及找到文本的语法结构,即哪些词彼此相关,如主语、动词、宾语补语等。另一方面,语义分析侧重于理解文本的含义,即文本在传达什么。为了做到这一点,NLP 使用一系列基于规则、基于统计和基于机器学习的技术。基于规则的过程涉及使用语法和语义规则来找到文本元素及其彼此关系。相反,基于统计的方法使用机器学习算法从大量文本数据中提取信息并找到模式和相关性。最后,基于机器学习的技术涉及使用 AI 模型从数据中学习并提高句法和语义分析的准确性。因此,计算机可以理解人类语言并执行机器翻译、自然语言理解、文本生成、分类和信息提取等任务。NLP 可以适应对话者的语言模式;然而,这取决于系统规格和用于理解自然语言的技术。一般来说,NLP 方法旨在在处理文本和口语时抓住内容和含义而不是语法结构。因此,如果对话者使用特定的语言变体,如口音或特定术语的特定用法,NLP 可能需要帮助理解一些文本部分。然而,有处理此问题的方法,如使用在多种语言上训练的机器学习模型或音译或口音检测算法。至于语法和句法错误,NLP 可能能够识别并纠正它们,这取决于所使用的系统和错误类型。例如,有特定的技术用于纠正拼写错误。相反,语言模式分析技术可用于确定某些词组或句法结构的可能性,以用于句法和语法错误。在 NLP 中,有许多技术可识别对话阶段的错误并自动纠正它们以获得更好的理解:✓ 主语和动词不一致:NLP 可能会���测到短语的主语与动词不一致,例如,“我做了一个蛋糕”而不是“我做了一个蛋糕”。在这个例子中,NLP 可以使用一种称为“解析”的技术来识别句子的主语和动词,然后使用语法规则修复错误✓ 代词使用错误:NLP 可以检测到代词被错误使用,例如“我遇见了玛丽,他告诉我…”而不是“我遇见了玛丽,她告诉我…”。在这种情况下,NLP 可以使用一种称为“指代消解”的技术来确定代词的正确指代物,然后用正确的代词替换它✓ 性别和数量一致错误:NLP 可以检测到一个词的性别或数量与其使用的上下文不一致,例如“桌子和椅子脏了”而不是“桌子和椅子脏了”。在这种情况下,NLP 可以使用“词性标注”来确定句子中词的性别和数量,然后使用语法规则修复错误✓ 连词使用错误:NLP 可以检测到连词被错误使用,例如“我更喜欢咖啡而不是茶”而不是“我更喜欢咖啡而不是茶���。在这种情况下��NLP 可以使用一种称为“依存句法分析”的技术来找到句子的句法结构,然后使用语法规则修复错误。
自然语言处理的历史和演变自然语言处理诞生于二十世纪中叶。然而,术语“自然语言处理”最早是由美国语言学家和计算机科学家艾伦·纽厄尔在 50 年代首次提出的。纽厄尔是最早意识到自然语言处理对人工智能发展的重要性之一,并提议利用机器学习和自然语言识别技术来创建能够理解人类语言的机器。第一个自然语言处理项目是“Teodele”,这是一个在 50 年代和 60 年代在意大利开发的项目,旨在创建一个能够自动将自然语言翻译成机器代码的系统。该项目由意大利政府资助,在比萨大学与其他意大利大学和研究中心合作开发。该项目的科学方向由安东尼奥·扎波利教授负责,他后来成为意大利计算语言学中最重要的专家之一,当时是比萨大学文学院的普通语言学和计算语言学教授。其他团队成员包括计算机科学家安东尼奥·马蒂和皮耶罗·莫林利,语言学家吉安弗兰科·贝拉尔迪和朱塞佩·格罗西等。Teodele 项目的技术依赖于句法文本分析来检测语音和句子结构组件。不幸的是,该系统受制于自然语言的丰富性,无法辨别意义的歧义和细微差别。尽管项目失败,Teodele 的研究团队在 NLP 的发展中做出了重要贡献,特别是在句法分析、词典和机器翻译规则方面。由于引入了第一台计算机和创新的自然语言处理技术,NLP 在 60 年代和 70 年代取得了重大进展。在这个时候,全球各地的几所大学和研究机构开始开发自然语言分析和机器翻译程序。他们专注于构建语言处理的词典和语法规则,这是发展语言处理算法的基础。由美国研究员特里·维诺格拉德在麻省理工学院创立的 SHRDLU 项目是当时的重要项目之一。SHRDLU 是一种人工智能软件,通过简化的自然语言与用户交互并在虚拟世界中操作虚拟对象。这项研究展示了开发自然用户界面用于机器控制的能力,但也展示了基于规则的自然语言处理的局限性。基于机器学习技术的最早自然语言分析系统是在 70 年代创建的。英国学者杰拉尔德·加斯帕率先提出了“上下文语法”的概念,这是一种利用机器学习技术理解自然语言语法原则的句法方法。这种方法克服了基于规则的语言处理系统的一些缺点。在 80 年代和 90 年代,NLP 开始在许多领域找到实际应用,如机器翻译、情感分析、在线查询处理、生成聊天机器人和虚拟助手等。在 2000 年代,NLP 研究集中于开发利用大量数据训练模型���统计模型,这些统计模型对机器翻译、文本生成和情感分析应用非常有用。近年来,深度学习技术,特别是神经网络,使 NLP 取得了重大进展。特别是利用基于神经网络的语言模型,如循环神经网络和转换神经网络,使得能够生成连贯和自然的文本,回答用户问题,并理解自然语言使用的上下文成为可能。此外,采用强化学习模型使得开发能够与用户越来越自然和流畅地交互的对话机器人成为可能。
与每个自然语言处理系统互动的 10 个基本规则
- 提供清晰和结构良好的输入
提供清晰和结构良好的输入对于有效与自然语言处理系统互动并实现高质量结果至关重要。这是因为自然语言处理系统并不像我们一样理解人类语言,而只处理以精确方式结构化的数据和信息。在实践中,自然语言处理系统使用算法和机器学习模型来分析和理解自然语言,但这些模型需要结构良好的数据和精确的输入才能正常运行。换句话说,如果我们提供正确或详细的信息,NLP 系统可能会产生准确或正确的结果。因此,在与自然语言处理系统互动时提供清晰和结构良好的输入至关重要。这可能包括使用精确的关键词,适当格式化数据,使用简单易懂的短语,避免使用模棱两可或复杂的词语。大多数使用自然语言处理的系统在直观和易于访问的界面上工作,以快速引导用户提供已经精确的输入。
- 使用简单直接的语言
由于几个原因,利用基本、直接的语言至关重要。首先,自然语言处理系统使用算法和机器学习模型分析和理解自然语言。为了成功运行,这些模型需要结构化数据和精确的输入。如果您使用过于复杂或复杂的术语,系统可能需要帮助理解用户的目标。其次,考虑您希望创建的输出的最终用户;使用清晰、简单的语言可能会使处理系统更容易。最后,使用简单、基本的语言可以增加用户体验和乐趣。例如,如果用户可以自然流畅地与自然语言处理系统互动,而不使用人为或复杂的语言,他们可能更有可能使用系统并实现期望的结果。
- 提供充分的文本
这些系统主要依赖上下文来理解句子或实例的含义。上下文提供了关于先前所说或写的内容以及沟通周围的情况和环境的信息。例如,与虚拟助手交流时,提供关于您背景或意图的信息可以帮助系统提供更准确和有帮助的回应。此外,提供适当的上下文可以帮助消除沟通中的任何歧义。例如,许多单词和短语可能有多重含义,但当您了解它们被使用的上下文时,您可以更好地理解确切的含义。
- 避免歧义
歧义可能是由许多因素引起的,比如使用多个含义的单词、缺乏上下文或用户请求的不清晰。歧义对于 NLP 系统来说可能特别棘手,因为它们根据上下文和含义不同地解释单词。这可能导致错误或不足够的答案。例如,如果用户问一个虚拟助手,“你能告诉我今晚有什么电视节目吗?”。那么系统的答案将取决于对“电视”(可以指电视机或电视广播)、“有什么”(可以指电视节目或设备)和“今晚”(这取决于时区或地理区域)含义的理解。一些特定数据库上的系统可以识别歧义,但大多数人工智能在发现歧义时会要求对话者澄清。
- 提供一些例子
它帮助系统理解用户在特定上下文中如何使用自然语言。这可以提高系统响应的准确性,并使用户的参与更成功和有价值。举例说明的用法可以帮助系统识别用户的语言模式并适应用户的偏好。例如,如果一个虚拟助手被用来从餐馆订餐,提供精确的菜品样本、配料和定制可以帮助系统理解人类的偏好并提供更准确的答案。
- 使用适当的语气
语气可以影响系统提供的响应的准确性。语气可以影响单词和短语的含义以及系统如何理解用户的请求。例如,以侵略性或冒犯性提出的建议可能会被解释为与礼貌或礼貌提出的请求不同。此外,由于系统的人工智能不断学习和适应其对话者,不当或不专业的语气可能会导致它们以同样的方式回应并引起沮丧或失望。
- 具体性
自然语言处理系统使用自然语言处理技术来解释用户使用的单词和短语的含义。然而,这些系统无法解决请求的隐含或假定含义,而只能解决所使用单词的字面含义。因此,提出具体的请求非常重要。例如,如果用户想要预订酒店房间,一个泛泛的请求,比如“我想预订一个房间,找到给我最好的优惠”可能对 NLP 系统来说不够,它需要更多信息,比如到达日期、停留时间、房间类型等。
- 一致性
在与自然语言处理系统一起工作时,一致性至关重要,因为它有助于保持用户和系统之间的通信一致的准确性和可靠性。一致性指的是在与自然语言处理系统互动时使用相同的语言和沟通结构的要求。这意味着用户应该避免在同一对话中经常更改所需的信息或使用具有不同设计和含义的句子。这一点很重要,因为自然语言处理系统是建立在识别特定语言模式和模式的基础上的。因此,提供不一致或模糊的信息可能会使系统更清晰,更容易理解用户的请求。此外,一致性对确保系统的响应准确和适当至关重要,避免误解和错误答案。
- 相关信息
上下文和一致性使系统能够识别请求并给出精确和清晰的结果。另一方面,提供无关信息可能会产生歧义,使互动复杂化或使系统误入歧途,导致无法给出符合要求的质量有效答案。
- 保持灵活。
它更多地可以被定义为耐心。在与人工智能的互动中,随着互动的进行,它学习和适应。因此,用户需要保持一定的灵活性,并了解如何对任何错误答案或根据正在进行的互动带来的情况做出回应。
如何编写提示
什么是提示?提示是提供给机器学习算法的一系列指令,用于创建特定结果;它允许用户向 AI 推荐颜色或主题。根据这些信息,后者将创作出一幅艺术作品。因此,它们可以被描述为 AI 生成器的通信渠道,将概念(即图片应该包含什么)传递给机器学习模型,将文本转化为图像。提示有几种类型。它们可以是一行文本,也可以像你喜欢的那样复杂,带有表情符号,让你得到期望的结果。提示是给出指示的文本字符串。当你给 ChatGPT 一个提示时,这个机器人利用其理解自然语言的能力生成一致和相关的回应。当然,不要期望完美的答案。它可能需要被纠正或需要帮助理解你想要什么。但总的来说,提示是与 AI 互动并发现它们能做什么的一种令人兴奋的方式!提示在生成式 AI 的功能中起着至关重要的作用。在自然语言生成中,提示为 AI 模型提供了生成文本的起点或方向。提示可以是一个句子,一个短语,一个问题,甚至是一个单词,模型应该扩展。提示的构建方式可以显著影响 AI 模型的输出。例如,一个精心设计的提示可以导致连贯和相关的生成,而一个混乱的提示可能导致无意义或不相关的文本。在某些情况下,提示还可以引导模型朝着特定的写作风格或语气发展。例如,带有“正式”或“非正式”的提示可以帮助模型生成符合期望方式的文本。提示是控制和引导生成式 AI 模型输出的宝贵工具。它们允许人类向模型提供输入和反馈,并帮助确保生成的文本是有价值和相关的。提示在生成式 AI 的功能中的作用是多方面的。提示的主要功能之一是为 AI 模型提供生成文本的起点或方向。这在模型旨在为人类生成相关和有价值文本的情况下尤为重要。通过提供提示,人类可以引导 AI 模型生成与特定上下文或主题相关的连贯、信息丰富和相关的文本。这在 AI 模型为特定目的生成文本,如撰写新闻文章或产品描述时尤为重要。此外,它可以帮助 AI 模型生成符合特定品牌语气或风格的文本。此外,提示还可以用于引导 AI 模型生成与特定叙事或主题一致的文本。例如,带有关于角色、场景或事件的详细信息的提示可以帮助模型生成符合特定叙事框架的文本。提示是生成式 AI 功能中的重要工具。它们允许人类向模型提供输入和反馈,并帮助确保生成的文本是相关、有帮助的,并与特定上下文或目的一致。
如何撰写提示:撰写 AI 提示涉及向 AI 语言模型提供清晰、简明的指示,以生成符合期望目标的输出。以下是撰写 AI 提示的一些广泛指导原则:
-
定义问题或任务:定义您希望 AI 模型执行的问题或任务。这可以是根据主题或提示生成文本、总结内容或回答问题等任何内容。
-
确定输入:首先,确定 AI 模型将用于执行任务的输入。这可以是文本提示、图像或模型可以处理的任何其他形式的数据。
-
指定输出:AI 模型应生成的期望输出。这可以是文本块、图像或任务所需的其他适当内容。
-
确定约束条件:确定应对 AI 模型施加的任何约束条件。例如,如果希望模型生成文本,则指定字数限制或特定的写作风格。
-
构建提示:最后,构建将提供给 AI 模型的提示。提示应传达问题或任务、输入、期望的输出和约束条件。提示应以清晰、简洁的语言编写,以便 AI 模型能够轻松理解。
一些撰写有效 AI 提示的技巧包括:撰写提示时,考虑生成式 AI 模型要生成的输出类型。例如,您希望它生成故事、文章、诗歌还是其他内容?确定输出类型后,考虑您希望文本涉及的具体主题或主题。以下建议将帮助您创建强大的提示:
- 明确具体
您的提示应传达您希望 AI 模型生成的内容。避免使用模糊或含糊不清的语言,这可能导致混淆。在为生成式 AI 模型编写提示时,清晰和具体是至关重要的。提示应传达您希望模型生成的内容,并避免模糊或含糊不清的语言,这可能导致无关或混乱的输出。为了实现清晰和具体,使用精确的语言传达您希望模型生成文本的具体主题或主题是至关重要的。例如,如果您希望模型生成一个关于一座闹鬼房子的短篇故事,请使用明确清晰的语言清楚明确地传达这个想法。以下是一些示例,说明在编写提示时如何清晰和具体:示例 1:模糊提示:“写一个爱情故事。”清晰具体提示:“写一个 500 字的短篇故事,讲述两位高中恋人分开十年后重逢的故事。”在这个例子中,模糊的提示留下了很多解释的空间,AI 模型可能会生成与预期主题无关的文本。相比之下,清晰具体的提示提供了关于情节、文本长度和 AI 模型应该生成的叙述类型的具体细节。示例 2:模糊提示:“写一个产品描述。”清晰具体提示:“为一款无线蓝牙音箱写一个 100 字的产品描述,强调其高品质音效和长续航时间。”在这个例子中,模糊的提示需要提供更多关于产品或目标受众的信息,这可能导致 AI 模型生成无关或不集中的输出。清晰具体的提示提供了关于产品、应该强调的关键特性和文本长度的具体细节,有助于引导 AI 模型生成相关和有价值的输出。示例 3:模糊提示:“写一篇科技论文。”清晰具体提示:“写一篇 1000 字的论文,论述社交媒体对心理健康的积极影响。”在这个例子中,模糊的提示需要更广泛和集中,这可能导致 AI 模型生成无关或不集中的输出。相反,清晰具体的提示提供了关于主题、应该写的文章类型和文本长度的具体细节,有助于引导 AI 模型生成相关有用的输出。确保提示专注并且只尝试涵盖一些想法或主题也是至关重要的。过于广泛或不集中的提示可能导致 AI 模型生成无关或不集中的输出。在撰写提示时,保持透明和具体的关键是仔细考虑 AI 模型需要生成相关输出的信息,并使用清晰明确的语言传达这些信息。
- 提供背景信息
提供上下文或背景信息以帮助模型理解主题并生成相关输出。上下文对于帮助 AI 模型理解主题并生成相关输出至关重要。提示应包括相关背景信息或细节,以使模型能够理解提示的上下文。这可能包括有关目标受众、生成文本的目的或主题的任何相关细节的信息。提供上下文有助于确保 AI 模型为预期受众生成相关、有用和适当的文本。例如,假设您正在使用生成式 AI 模型为特定目标受众创建产品描述。如果是这样,您应提供有关该受众的人口统计信息和偏好,以帮助引导模型生成相关且引人入胜的描述。在提供上下文时,关键是要在帮助 AI 模型理解主题的同时不提供过多信息,以至于变得过于复杂或分散注意力。关键是提供足够的上下文来引导 AI 模型生成相关且有价值的输出,而不会用不必要的信息使其不堪重负。提供上下文对于帮助 AI 模型理解提示并生成适当的无价产出至关重要。此外,通过提供必要的上下文,您可以引导 AI 模型生成符合您特定需求和要求的文本。以下是一些示例,说明如何在撰写提示时提供上下文:示例 1:最小上下文提示:“撰写一篇关于人工智能的博客文章。”提供上下文:以一般读者为目标受众,不需要关于人工智能如何影响医疗领域的技术专业知识,撰写一篇 500 字的博客文章。在这个示例中,提示提供了最少的上下文,可能导致 AI 模型生成的输出不集中或无关紧要。通过提供更多上下文,如具体主题、目标受众和博客文章的目的,AI 模型更能够生成相关且有价值的文本。示例 2:最小上下文提示:“为一辆汽车撰写产品描述。”提供上下文:“为一款豪华 SUV 撰写一篇 100 字的产品描述,强调其先进的安全功能和适合家庭出游的特点。”在这个示例中,提示只提供了最少的上下文,可能导致 AI 模型生成的输出不集中或无关紧要。通过提供有关目标受众、应强调的关键特点和描述目的的更多上下文,AI 模型更能够生成符合提示特定需求和要求的文本。示例 3:最小上下文提示:“撰写一篇新闻文章。”提供上下文:“为一座特定城市最近 COVID-19 病例激增撰写一篇 500 字的新闻文章,针对本地受众,重点关注对小企业和当地经济的影响。”在这个示例中,提示提供了最少的上下文,可能导致 AI 模型生成的输出不集中或无关紧要。通过提供有关具体主题、目标受众和文章目的的更多上下文,AI 模型更能够生成相关且有用的文本,满足提示的特定需求和要求。
- 保持一致的语调
如果您希望生成的文本具有特定的语调或风格,请确保您的提示反映了这一点。使用与所需方式相匹配的语言和措辞。在为 AI 模型编写提示时,使用一致的语调至关重要。这意味着在整个提示中使用相同的风格、语气和形式水平。一致的语调至关重要,因为它有助于在提示中创建连贯和清晰的感觉。它还使 AI 模型能够更好地理解提示的风格和方式,并生成与该语调一致的文本。在使用一致的语调时,必须考虑文本的预期受众和目的。例如,如果文本旨在正式和专业,提示的语调应通过使用标准语言和严肃的语气来反映这一点。另一方面,如果文本更具对话性或非正式性,提示的语气应通过使用更随意和友好的语言来反映这一点。以下是如何以一致的语调撰写提示的几个示例:示例 1:不一致的语调:“嘿!我们需要你为我们的网站生成一些文本。它应该大约 500 字,并讨论我们产品的优势。谢谢!”一致的语调:“请为我们的网站生成一篇 500 字的内容,讨论我们产品的优势。感谢您的帮助。”在这个例子中,第一个提示的不一致语调可能更明显或分散 AI 模型的注意力,这可能会影响生成的输出质量。因此,第二个提示在整个过程中使用一致的专业语调。示例 2:不一致的语调:“为我们写一篇关于我们新产品的令人印象深刻的博客文章。它应该大约 1000 字,并包含大量酷炫的信息。谢谢!”一致的语调:“我们希望您为我们的新产品撰写一篇 1000 字的博客文章。请包含详细信息和示例以阐明您的观点。感谢您的帮助。”在这个例子中,第一个提示的不一致语调可能会分散或混淆 AI 模型的注意力,这可能会影响生成的输出质量。因此,第二个提示在整个过程中使用一致的专业语调。总之,在为 AI 模型编写提示时使用一致的语调对于创建清晰、连贯的提示至关重要,这有助于 AI 模型生成相关和有价值的输出。通过在整个提示中使用相同的风格、语气和形式水平,您可以引导 AI 模型生成符合您特定需求和要求的文本。
- 保持简洁
虽然您希望提供足够的信息来指导模型,但必须确保您获取所有信息。因此,保持您的提示简洁明了。在为生成式 AI 模型编写提示时,提供充分的上下文和相关信息以指导 AI 产生期望的输出至关重要。这包括目标受众、文本目的以及需要遵循的任何具体要求或指导方针。提供上下文和相关信息有助于 AI 模型理解提示的目标和期望,从而产生更高质量的输出。缺乏充分上下文,AI 模型可能会生成不相关的文本或未达到预期目标。以下是在编写提示时如何提供上下文和相关信息的一些示例:示例 1:缺乏上下文:"写一篇关于猫的博客文章。"充分的上下文:"为一般受众撰写一篇 500 字的博客文章,介绍领养猫作为宠物的好处。包括不同猫种的信息、它们的个性以及领养猫与其他类型宠物相比的优势。"在这个例子中,第一个提示中缺乏的上下文留下了太多解释的空间,可能导致一系列可能与期望目标不相关的输出。因此,第二个提示提供了以下内容:
-
关于目标受众的更具体信息。
-
文本的目的。
-
具体要求,以帮助指导 AI 模型产生期望的输出。
示例 2:缺乏上下文:"生成产品描述。"充分的上下文:"为一款新的运动鞋系列生成一篇 100 字的产品描述。这些鞋子专为跑步者设计,应强调它们的轻便设计、舒适合身和耐用结构。目标受众是年龄在 18-35 岁之间的活跃个体。"在这个例子中,第一个提示中缺乏的上下文需要提供更多关于产品或目标受众的信息,这可能导致需要更相关和实用的文本。第二个提示包括关于产品、目标受众和 AI 模型需求的具体信息,以产生更具针对性和引人注目的产品描述。在为 AI 模型编写提示时提供充分的上下文和相关信息对于指导 AI 产生期望的输出至关重要。通过包括目标受众、文本目的和具体要求等细节,您可以确保 AI 模型生成相关、实用的文本,满足您的需求和目标。
- 使用清晰的语言
在为生成式人工智能模型编写提示时,使用清晰简洁的语言至关重要,以避免混淆或歧义。此外,提示中使用的语言应简单易懂,便于人工智能模型理解。如果使用了人工智能模型不熟悉的专业术语或技术语言,这一点尤为重要。在起草写作提示时,考虑使用以下明确简洁的语言示例:示例 1:模糊语言:“为公司去年财务表现撰写一份全面报告。”清晰语言:“撰写一份 500 字的报告,总结截至 2022 年 12 月 31 日的财政年度公司的财务表现。包括收入、支出和利润数据。”在这个例子中,第一个提示中的模糊语言含糊不清,可能难以让人工智能模型理解。因此,第二个提示使用清晰简洁的语言,提供关于报告目的和要求的具体细节。示例 2:模糊语言:“撰写一篇关于社交媒体优缺点的文章。”清晰语言:“撰写一篇 750 字的文章,分析社交媒体对现代社会的积极和消极影响。使用具体例子和统计数据支持你的论点。”在这个例子中,第一个提示中的模糊语言可能导致文本过于宽泛或不集中。因此,第二个提示使用清晰简洁的语言,提供文章的具体要求和指导。通过在为人工智能模型编写提示时使用清晰简洁的语言,您可以确保输出符合您的具体需求和目标。这也有助于避免混淆或误解,导致无关或无效的文本产生。
- 避免偏见或带有情感色彩的语言:
在为生成式人工智能模型编写提示时,必须注意可能存在的任何偏见或带有情绪色彩的语言。这包括可能影响人工智能模型输出的文化、性别或种族偏好。带有偏见的语言可能导致歧视性、刻板化或冒犯性的输出。通过避免主观、带有偏见或情绪色彩的语言,使用中立语言,您可以帮助确保人工智能模型产生公平、客观和包容性的输出。这有助于避免持续传播有害的刻板印象或假设,并创造更准确和有价值的输出。示例 1:带有偏见的语言:“写一个关于成功的男性企业家的故事。”中立语言:“写一个关于成功的企业家的故事。”在这个例子中,第一个提示中的带有偏见的语言假设所有成功的企业家都是男性。通过去除特定于性别的语言,提示变得更具包容性,允许女性或非二元性别主人公的可能性。示例 2:带有偏见的语言:“撰写一份关于雇佣年轻、精通技术的员工优势的报告。”中立语言:“撰写一份关于雇佣具有技术技能员工优势的报告。”在这个例子中,第一个提示中的带有偏见的语言假设年轻员工本质上更精通技术,这在某些情况下可能是准确的。另一方面,第二个提示中的中立语言允许所有年龄段的员工具有技术技能。通过避免提示中的带有偏见或情绪色彩的语言,您可以帮助确保人工智能模型生成的输出是公平、客观和包容性的。这有助于避免持续传播有害的刻板印象或假设,并创造更准确和有价值的产出。
- 使用示例和参考资料:
在您的提示中使用示例和参考可以帮助为 AI 模型提供清晰和上下文。样本可以帮助澄清所需的输出,而权威可以提供背景信息或上下文,供 AI 模型借鉴。提供示例和参考可以确保 AI 模型为用户产生相关和实用的价值。此外,标准和联系可以帮助避免用户和 AI 模型之间的误解。通过使用相关的预先指定的示例和参考,您可以确保 AI 模型产生准确和可靠的输出。以下是一些示例,以说明在编写有效提示时使用示例和参考的方法:示例 1:糟糕的提示:“生成巧克力蛋糕的食谱。”改进的提示:“生成一个经典巧克力蛋糕的食谱,包括面粉、糖、鸡蛋、黄油、可可粉和香草精等成分。这个食谱应该制作出一个湿润、酥软的蛋糕,具有浓厚的巧克力味。使用这个巧克力蛋糕食谱作为参考:[链接到巧克力蛋糕食谱]。”在这个例子中,改进的提示包括具体的成分示例和对现有巧克力蛋糕食谱的参考,以提供上下文和指导 AI 模型。示例 2:糟糕的提示:“写一首浪漫的诗。”改进的提示:“以伊丽莎白·巴雷特·勃朗宁的《我如何爱你》风格写一首浪漫的诗。使用以下行来参考:‘我崇拜你到我灵魂的深度、宽度和高度。’”在这个例子中,改进的提示提供了一个具体的参考点和所需风格的度量,以指导 AI 模型生成一首浪漫的诗。在您的提示中使用清晰的示例和参考可以确保 AI 模型产生相关和有用的输出,为用户提供有价值的信息。
- 测试和迭代
一旦你为生成式 AI 模型编写了提示,测试并根据需要进行迭代是至关重要的。这涉及将提示通过 AI 模型运行并评估输出,以确定其质量和相关性。根据这一评估,您可能需要通过澄清语言、提供更具体的指导或更改上下文或示例来调整提示。此外,重复您的提示直到您对 AI 模型生成的输出质量满意是必不可少的。这可能涉及使用多次迭代的 AI 模型或不同数据集测试提示。通过测试和迭代您的提示,您可以确保 AI 模型生成的输出符合用户需求,准确且有用。测试和迭代是提示编写过程中至关重要的组成部分,因为它们允许您随着时间的推移增强和改进您的提示。通过评估 AI 模型生成的输出,您可以确定改进的方向并相应调整您的提示。这有助于确保 AI 模型产生符合用户需求的高性能。以下是一些示例,以说明在编写有效提示时测试和迭代的用法:示例 1:初始提示:“生成一个关于侦探解决谋杀案的短篇故事。”第一次迭代输出:输出的故事令人困惑,缺乏直接的情节。修改后的提示:“生成一个关于名叫约翰的侦探调查一位富商谋杀案的短篇故事。故事应该有一个清晰的情节,包括受害者的描述、可能的嫌疑人和导致案件解决的线索。”第二次迭代输出:输出的故事更加透明和连贯,但结尾突然而令人不满。修改后的提示:“生成一个关于名叫约翰的侦探调查一位富商谋杀案的短篇故事。故事应该有一个清晰的情节,包括受害者的描述、可能的嫌疑人和导致案件解决的线索。最后,故事应该有一个令人满意和完整的结局,解决所有悬而未决的问题。”最终输出:最后的故事符合修改后提示的所有标准,结构良好且令人满意。示例 2:初始提示:“生成一首关于爱情的诗。”第一次迭代输出:输出的诗太过通用,缺乏明确的意象或情感。修改后的提示:“生成一首关于两位已婚 50 年以上的人之间的爱情的诗。诗应包含唤起持久爱情感觉的意象,以及长久关系的挑战和回报。”第二次迭代输出:输出的诗更具体,包含一些生动的意象,但在情感和深度上仍有待改进。修改后的提示:“生成一首关于两位已婚 50 年以上的人之间的爱情的诗。诗应包含唤起持久爱情感觉的生动意象,以及长久关系的挑战和回报。此外,诗应传达深刻的情感和联系。”最终输出:最后的诗符合修改后提示的所有标准,是一幅感人而��起共鸣的长久爱情描绘。通过测试和迭代您的提示,您可以随着时间的推移对其进行改进,以确保它们从生成式 AI 模型中生成高质量和相关的输出。注意*除了上述提到的提示之外,考虑生成 AI 生成内容的伦理考虑也是至关重要的。随着生成式 AI 技术的兴起,人们对这种技术可能被滥用以生成有害或误导性内容的担忧日益增加。因此,在为生成式 AI 编写提示时,必须考虑生成内容对人们或社会的潜在影响。例如,应避免创建虚假新闻或仇恨言论的提示。同时,透明地表明内容是由 AI 生成而不是人类生成也很重要。这有助于避免任何对由人类生成的内容的混淆或误解。此外,必须认识到生成式 AI 模型具有灵活性,可能会产生有偏见或问题的输出。因此,继续测试和迭代提示以确保生成的内容高质量且符合伦理标准至关重要。通过遵循这些提示并考虑生成式 AI 技术的伦理影响,我们可以创建有效的实用的提示,帮助发挥这项技术的全部潜力,同时最小化潜在的危害。
为创建 AI 图像的提示提供基本指南至于要包含在提示说明中的建议,记住为了生成引人入胜的主题,提示必须包含一个名词,一个形容词和一个动词。以下是一些要遵循的一般指导原则:
-
至少写下 3 到 7 个单词;如果包含三个以上的单词,AI 将更好地理解提示。
-
使用形容词在艺术作品中注入更多的“感觉”(例如,美丽的,逼真的,多彩的,巨大的)。
-
包括艺术家的名字:AI 将模仿该艺术家的风格(例如,毕加索,梵高,高更)。
-
选择风格:如果想要复制特定风格,请包括所需的名称(例如,超现实主义)。
-
使用计算机图形:使用使任务更有效和有意义,例如,Octane 渲染,Cycles,虚幻引擎和光线追踪。
-
选择质量 - 指示分辨率为低、中、高、4k 或 8k。
-
不要使用 AI 生成器禁止的词语。
有效提示生成图像的基本原则对于 AI 图像生成,提示是一切。明确您的目标可能意味着区分一个逼真准确的图像和一个看起来像孩子画的图像。
目录生成式人工智能简介生成式人工智能的工作原理生成式人工智能的输入和输出层生成式人工智能的优势生成式人工智能的劣势流行的生成式人工智能应用生成式人工智能项目哲学顶尖生成式人工智能工具使用生成式人工智能的初创公司人工智能模型自然语言处理:是什么以及基本规则自然语言处理是什么自然语言处理的历史和演变与每个自然语言处理系统互动的 10 个基本规则如何编写提示究竟什么是提示?如何编写提示撰写有效人工智能提示的一些建议包括:为人工智能图像创建提示的基本指南生成式人工智能艺术的差异生成式人工智能音频的差异生成式人工智能视频的差异撰写提示时的常见错误完善和找到正确提示的过程生成式人工智能的局限性结论
通常,用于 AI 图像生成的文本输入始终具有相同的结构。在大多数情况下,需要三样东西:主题:你看到了什么?⦁ 详细信息和设置:关于什么?⦁ 风格、艺术家和媒体类型应该是什么样子?应始终使用简单而简洁的输入语言。例如,一个完整、语法完美的句子将有助于模型理解输入的上下文并生成相应的图像;如果信息含有歧义或错误,图像生成将受到影响。解释应该存在的事物而不是缺少的事物。如果你想避免一个有胡须的男人,不要写“一个没有头发的男人”,而是写“一个秃头男人”。AI 会字面理解事物;因此,如果提示中有某样东西,它很可能会重新创建它。但是,请记住,模糊的复数词如“猫”给文本到图像 AI 留下了很多解释的机会,因此我们建议最多输入三个主题。还要知道模型是用什么语言编写的,因为不同语言有不同的词序,这可能会影响图像生成。如果你使用带有内置机器翻译的文本到图像生成器,由于翻译错误,许多事情可能会被更正。如果你想最大化提示的效果,建议在使用以下时使用英语:Stable Diffusion、DALL.E、DALL.E2、Midjourney 或 Dreamstudio。Stable Diffusion 算法是在一个包含 23 亿英文图像文本对和来自 100 多种其他语言的 22 亿图像文本对的 LAION-5B 子集上编程的;这意味着你不仅限于西欧字母表。结果可能会因 AI 的原产国而大不相同。例如,使用特定国家数据编程的 AI 很可能了解该国的艺术家。如果你使用拉脱维亚 AI,他将更了解俄罗斯和东欧的艺术家。建议是为你尝试制作的特定外观选择最佳的文本到图像生成器。还要记住,AI 是基于偏见的:记住 AI 生成器所编程的图像数据库可能基于其训练而包含歧视。创建有效的 AI 图像提示时要记住的更多提示以下是创建 AI 图像生成提示时要记住的一些提示:
-
考虑你希望制作的照片类型。决定你想要创作逼真还是抽象的视觉作品是至关重要的。一旦问题解决,找到合适的建议将会更容易。
-
想想你希望 AI 访问的数据类型。
-
例如,如果你正在创作逼真的照片,你必须包含场景数据,如位置、光线和物体。另一方面,如果你正在创作抽象的视觉作品,你可以提供颜色、形式和图案的列表。
-
尽可能详细地提供你的建议。
-
在你的提示中利用几种艺术技巧,如滤镜,允许 AI 通过指令为你生成的图像增添个性。
-
撰写一个简单直接的提示。AI 模型可能难以理解复杂的指令,从而生成错误的图像。
-
在你的提示中定义一个色彩调色板;AI 将使用它来生成你的图像。
-
撰写一个包含多位著名艺术家姓名的提示,以实现独特风格。
-
要有创意!在询问关于 AI 图像生成时,没有错误的回答。因此,不要犹豫尝试新事物,看看会发生什么。
-
对于 AI 从文本生成图像可能是一个巨大挑战,因为有时它可能无法理解关系(意义)以生成最终作品。你可以尝试重复描述,改变词序,重复项目,或添加更多项目。
-
要有耐心。了解 AI 模型的行为并生成准确、逼真的图像可能需要一些时间。
用于创建图像生成提示的工具如果我们不想手动创建提示,有几种工具可帮助我们生成它们。以下是一些:
-
Midjourney 随机命令生成器
-
Phraser. tech - 多个神经网络(AI)的提示生成器
-
Huggingface 和 Midjourney 提示生成器
文本到图像提示生成器 - 艺术建议的提示生成器
-
noonshot.com
-
Midjourney 助手
-
Dall-E 提示助手
-
Promptomania.com:
-
DreamStudio 提示生成器
-
Midjourney 提示生成器
-
Stable Diffusion 消息生成器
-
Lexica. Art- 一系列使用 Stable Diffusion 生成的建议和图像
生成式 AI 艺术的不同之处生成式 AI 艺术是指借助人工智能创作的艺术作品。生成式 AI 艺术有不同的方法,以下是一些关键区别:
- 风格
生成式 AI 艺术可以以各种风格创作,从抽象到具象,从写实到超现实。一些艺术家使用 AI 创作看起来像是人类创作的作品,而另一些则拥抱机器美学,创作展示 AI 独特能力的艺术品。生成式 AI 艺术是艺术作品的风格。这指的是绘画的整体美学,比如它是抽象的还是具象的,写实的还是超现实的。生成式 AI 艺术可以根据艺术家的喜好和技术以不同风格创作。一些艺术家使用 AI 创作模仿传统艺术风格的作品,比如印象派或立体派,而另一些则探索只有 AI 才可能的新颖和非传统风格。例如,艺术家可以使用 AI 根据特定输入数据(如图像或声音)生成抽象图案或纹理。或者,他们可以使用 AI 创作看起来像人类的表现性艺术,比如肖像或风景画。生成式 AI 艺术的风格也可能受到用于训练 AI 算法的输入数据的影响。例如,艺术家可以使用 AI 基于真实世界数据(如照片或音频录音)创作艺术作品。这可能导致更加真实或现实基础的艺术作品。另一方面,艺术家可以使用合成数据训练 AI 算法,导致更加抽象或超现实的艺术作品。生成式 AI 艺术的风格可以变化很大,艺术家可以选择最适合他们创意愿景的方法。
- 技术
在生成式人工智能艺术中使用了不同的技术,包括深度学习、神经网络、遗传算法和基于规则的系统。每种方法都有其优势和局限性,艺术家会选择适合其艺术愿景的方法。生成式人工智能艺术是用来创作艺术品的技术。在生成式人工智能艺术中可以使用多种技术,包括深度学习、神经网络、遗传算法和基于规则的系统。深度学习是一种技术,涉及使用大型数据集训练神经网络,使网络能够学习可以用于生成新数据的模式和特征。在生成式人工智能艺术中,深度学习可以基于输入数据创建逼真或抽象的图像。例如,艺术家可以在风景照片数据集上训练神经网络,然后使用网络生成融合原始数据集元素的新颖独特风景。神经网络在生成式人工智能艺术中也经常被使用。这些网络模仿了人脑的结构,并可以被训练用于识别数据中的模式。在生成式人工智能艺术中,神经网络可以基于输入数据创建新的图像或音乐。例如,艺术家可以在动物图像数据集上训练神经网络,然后使用网络生成融合原始数据集元素的新颖独特动物图像。遗传算法是生成式人工智能艺术中使用的另一种技术。这些算法受自然选择和进化的启发。它们涉及创建候选解决方案的种群,并选择最佳解决方案随着时间的演变和突变。因此,遗传算法可以在生成式人工智能艺术中创建独特的设计或图案。最后,基于规则的系统可以在生成式人工智能艺术中使用。这些系统涉及创建规则或程序来控制艺术品的生成方式。例如,艺术家可以创建一个基于规则的系统,根据特定规则或参数生成抽象图案。总的来说,生成式人工智能艺术中使用的技术取决于艺术家的偏好和期望结果。不同的方法可以产生不同的风格和效果;艺术家需要确定哪种方法最适合其艺术愿景。
生成式人工智能艺术中使用的输入数据可以各不相同。一些艺术家使用真实世界的数据,如图像或声音,作为输入,而其他人则使用专门为人工智能训练而创建的合成数据。生成式人工智能艺术是用于训练人工智能算法的输入数据。生成式人工智能艺术可以使用包括真实世界数据(如图像、视频和音频)和专门用于人工智能训练的合成数据在内的输入数据构建。生成式人工智能艺术可以利用真实世界数据的一种方式是通过生成对抗网络(GANs)的使用。GANs 由两个神经网络组成,一个生成器和一个鉴别器,它们一起进行训练。生成器根据训练数据集创建新数据,而鉴别器确定生成的数据是真实还是伪造的。通过这个过程,生成器学会使新数据与原始训练数据无法区分。GANs 可以基于真实世界数据在生成式人工智能艺术中创建新的图像、视频或音频。生成式人工智能艺术可以利用真实世界数据的另一种方式是通过卷积神经网络(CNNs)的使用。CNNs 通常用于计算机视觉,并可以训练以识别图像模式和特征。在生成式人工智能艺术中,CNNs 可以创建类似于原始训练数据风格的新图像。除了真实世界数据,生成式人工智能艺术还可以使用专门为人工智能训练而创建的合成数据。这可能包括随机噪声或其他类型的抽象数据,可用于生成新鲜和原创的艺术作品。例如,艺术家可以使用遗传算法基于随机生成的数据创建新的图案或设计。总的来说,生成式人工智能艺术中使用的输入数据可以各不相同,选择输入数据将取决于艺术家的偏好和期望的结果。使用真实世界或合成数据,生成式人工智能艺术可以创造受我们周围世界启发的新颖独特的艺术作品。
- 控制
生成式人工智能艺术可以以不同程度的控制来创建。一些艺术家为人工智能设定特定的参数,而另一些则给予人工智能更多的创作自由来生成艺术作品。生成式人工智能艺术是艺术家对创作过程的控制程度。虽然生成式人工智能艺术通常与无人干预地创建艺术作品相关联,但艺术家可以对最终输出具有不同程度的控制。生成式人工智能艺术的一种方法是利用人工智能来帮助艺术家创作。在这种方法中,艺术家对最终输出保持高度控制,利用人工智能来增强或启发他们的创作过程。例如,艺术家可以使用一种人工智能工具来生成一组抽象图案,然后将这些图案作为更大艺术作品的起点。生成式人工智能艺术的另一种方法是创建一组规则或参数来指导人工智能算法,使艺术家能够对最终输出具有一定程度的控制。例如,艺术家可以创建一个基于规则或参数的系统,根据特定规则或参数生成抽象图案。通过调整这些规则或参数,艺术家可以影响最终输出并实现期望的美学效果。生成式人工智能艺术的第三种方法是允许人工智能算法自主运行,几乎不需要艺术家的输入。在这种方法中,艺术家放弃对最终输出的控制,允许人工智能生成新颖和意想不到的艺术作品。虽然这种方法可能会产生令人惊讶和独特的结果,但对于艺术家来说,也可能更具挑战性地实现他们期望的结果。艺术家对创作过程的控制取决于他们选择的方法。例如,艺术家可以通过利用人工智能来增强他们的创作过程或创建指导人工智能算法的规则或参数来保留对最终输出的控制。另外,通过允许人工智能算法自主运行,艺术家可以放弃控制并接受意想不到的结果。
- 合作
一些生成式人工智能艺术完全由 AI 算法创建,而另一些则涉及 AI 和人类艺术家之间的合作。在这些情况下,人类艺术家可能向 AI 算法提供输入、指导或反馈,以帮助塑造最终的艺术作品。生成式人工智能艺术强调合作和社区在创作过程中的作用。虽然传统艺术形式如绘画和雕塑通常与独自在工作室中工作的艺术家联系在一起,生成式人工智能艺术通常是与他人合作并在在线社区中创作的。合作在生成式人工智能艺术中发挥作用的一种方式是通过开源 AI 算法和软件。开源软件允许开发人员和艺术家自由访问和修改代码,使他们能够在他人的基础上构建并为更大的社区做出贡献。这种合作方法可以开发出更强大和多功能的 AI 算法,更广泛的艺术家可以使用。合作在生成式人工智能艺术中发挥作用的另一种方式是通过在线社区和平台。许多高产的 AI 艺术家通过社交媒体平台如 Instagram 或 Twitter 在线分享他们的作品。通过分享他们的作品,艺术家可以从他人那里获得反馈和支持,并发现生成式人工智能艺术的新技术和方法。
除了在线分享他们的作品外,许多生成式人工智能艺术家还参与在线社区和论坛。这些社区允许艺术家分享他们的作品,讨论技术和方法,并合作开展新项目。在线社区也可以成为刚开始的艺术家的宝贵资源,提供信息、教程和支持。总的来说,合作和社区在生成式人工智能艺术中的作用是一个重要因素,使其与传统艺术形式有所不同。通过分享作品和合作,生成式人工智能艺术家可以创作出受到不同观点和经验启发的新颖作品。生成式人工智能艺术的差异反映了艺术家们使用人工智能创造独特和创新艺术作品的多样化方法。值得一提的是,生成式人工智能艺术仍然是一个相对较新的领域,其边界和可能性不断发展。然而,随着人工智能(AI)技术的进步,我们可以期待未来看到生成式人工智能艺术的新颖和创新应用。此外,虽然生成式人工智能艺术通常与数字媒体(如计算机生成的图像和动画)相关联,但也越来越多地探索在传统媒介(如绘画和雕塑)中生成式人工智能艺术的可能性。例如,一些艺术家使用 AI 算法创造出可用于纺织品印刷的生产设计,或者为雕塑形式生成新的创意。生成式人工智能艺术是一个迷人且快速发展的领域,模糊了人类和机器创造力之间的界限。通过将 AI 算法的力量与人类的聪明才智和想象力相结合,生成式人工智能艺术推动了艺术中可能性的前沿,产生了新颖和引人入胜的表现形式。
生成式人工智能音频的差异 与人类生成的音频相比,人工智能生成的音频存在几个差异。以下是其中一些:
- 语调和抑扬顿挫
人工智能生成的音频往往听起来机械化或单调,缺乏人类语音中自然而来的语调和抑扬顿挫的细微差别。语调和抑扬顿挫指的是在说话过程中声音的升降变化以及对某些词语或短语的强调。人类的语音在风格、节奏和力度上自然而然地根据信息的背景和内容而变化。这种变化可以传达有关说话者意图和情感状态的宝贵信息。另一方面,人工智能生成的音频有时会听起来机械化或单调,缺乏人类语音中自然而来的语调和抑扬顿挫的细微差别。这可能会使听众更难与信息内容互动,因为语调缺乏变化可能使其看起来不太令人兴奋或引人入胜。造成这种差异的一个原因是人工智能生成的音频通常使用文本转语音(TTS)技术创建,该技术涉及将书面文本转换为使用人类语音的预录音样本的口头语言。尽管近年来 TTS 技术取得了显著进展,但在复制人类语音中的自然语调和抑扬顿挫方面仍存在限制。另一个原因是说话者的个性、情绪和文化背景通常会影响人类语音。这些因素会影响一个人说话的方式,并且可能会产生难以复制的语调和抑扬顿挫的变化,这对人工智能生成的音频来说是困难的。总的来说,语调和抑扬顿挫的变化是人类语音传达意义和情感的重要方面。然而,这是人工智能生成的音频仍有改进空间的一个领域。
- 情感
人类语言常常充满兴奋、愤怒、悲伤或其他情感。AI 生成的音频可能能够在一定程度上复制一些情感,但它无法捕捉人类情感的微妙和复杂性。我列出的第二个区别是 AI 难以复制人类语言的情感方面。情感是人类沟通的重要方面,可以通过各种声音线索传达,包括语调、音量、速度和节奏。情感可以为信息增添深度和细微差别,并有助于听者更好地理解说话者的意图和观点。虽然 AI 生成的音频可以被设计成在有限程度上传达特定情感,但它无法捕捉人类情感的微妙和复杂性。这是因为人类情感受到多种因素的影响,包括说话者的个人历史、文化背景和社会背景等。例如,人类说话者可能使用不同的语调和语气来传达快乐、悲伤或愤怒,以及面部表情和肢体语言来传达情感。这些非语言线索对于 AI 生成的音频来说可能很复杂,使听者更难以与信息内容互动。另一个挑战是情感可以根据使用的语言而有所不同。例如,一些语言可能有特定词语或短语来表达某些感受,并依赖不同的语调或口音来传达意义。这可能使 AI 生成的音频更难以以文化正确和准确的方式传达情感。总的来说,虽然 AI 生成的音频可以被设计成在一定程度上传达情感,但它尚未捕捉到人类情感的全部范围和人类语言中出现的情感表达的微妙细节。
- 自然性
人类语言自然流畅,带有停顿、嗯、啊等使其听起来真实的怪癖。另一方面,由人工智能生成的音频有时可能显得生硬或勉强,缺乏人类语言的自然流畅性。我列出的第三个区别是人类语言与由人工智能生成的音频之间的自然性。人类语言并非总是完美流畅和精炼的;它可能包含停顿、犹豫和填充词如“嗯”和“啊”。这些怪癖赋予人类语言一种自然流畅,这对于人工智能生成的音频来说很难复制。这种区别很重要,因为人工智能生成的音频通常是使用预先录制的人类语音样本创建的,然后将它们拼接在一起以创建一个连贯的信息。虽然这种方法可以创建听起来相对真实的语音,但如果操作不当,它也可能产生机械化或不自然的效果。另一个影响人类语言自然性的因素是说话者根据上下文和听众调整他们的表达方式。例如,一个说话者在与儿童和领域专家交谈时可能会使用不同的词汇或句子结构。这些调整可以为语言带来一种自然流畅,这对于人工智能生成的音频来说可能很难复制,因为它可能对上下文和听众的理解水平不同。此外,压力、疲劳或分心通常会影响人类语言,这可能导致说话者结巴或出错。虽然这些错误看起来像是一种弱点,但它们可以使说话者更具亲和力,帮助建立与听众的真实性和共鸣。总的来说,人类语言的自然性是沟通的一个重要方面,有助于在说话者和听众之间建立一种连接和信任感。然而,虽然人工智能生成的音频可以被设计成听起来相对自然,但在复制人类语言的微妙之处和怪癖方面仍然存在局限性。
- 可理解性
人工智能生成的音频有时可能很难理解,特别是如果语言或口音不熟悉的话。人类通常能够更好地适应不同的口音和方言,并调整他们的语音模式以使自己被理解。我列出的最后一个区别是人工智能生成的音频与人类语音之间的可理解性。可理解性指的是听众能够理解信息的程度。人类语音通常非常易懂,由人体复杂和高度专门化的声音和听觉系统产生。相比之下,人工智能生成的音频在可理解性方面可能存在很大差异,这取决于一系列因素,包括音频录制的质量或传达的信息的复杂性。影响人工智能生成的音频可理解性的一个因素是语音合成技术。语音合成涉及使用算法根据书面文本生成语音。虽然语音合成可以非常有效地生成相对简单的信息,但对于复杂或微妙的注释可能更具挑战性,因为它可能需要准确捕捉人类语音的微妙之处。影响人工智能生成的音频可理解性的另一个因素是自然语言处理技术的使用。自然语言处理涉及使用算法分析和解释人类语言。虽然自然语言处理在特定应用中可以非常有效,比如语言翻译或文本转语音转换,但对于需要更深入理解人类语言和上下文的任务可能更具挑战性。总的来说,人工智能生成的音频的可理解性是评估其作为沟通工具有效性的重要考虑因素。然而,虽然人工智能生成的音频在某些情况下可能非常有效,比如传达简单信息时,但在复制人类语音的复杂和微妙的沟通能力方面可能需要帮助。因此,在考虑在不同的沟通环境中使用人工智能生成的音频时,重要的是仔细评估其优势和局限性。
- 上下文意识:
人类可以根据自己的情境或背景调整自己的言辞和语调。另一方面,由人工智能生成的音频可能需要更多的情境意识,有时在某些情况下可能听起来格格不入或不合适。情境意识指的是人类讲话者理解并回应对话的社会和情境背景的能力。这包括讨论的主题、语调、讲话者之间的关系以及管理交流的文化和社会规范等因素。人类讲话者可以利用他们对情境的理解实时调整自己的言辞,强调特定观点,或在不同情况下做出恰当的回应。例如,在正式的商务会议中,讲话者可能会使用更正式和礼貌的语调,而在与朋友进行随意对话时,同一讲话者可能会使用更轻松和非正式的风格。相比之下,由人工智能生成的音频可能无法像人类讲话者那样完全理解或回应情境因素。这可能导致人工智能生成的音频在特定沟通情境中的有效性受到限制。例如,如果人工智能生成的语音助手完全理解请求的情境,它可能只会适当地回应用户的请求。同样,与人类新闻主播不同,人工智能生成的新闻主播可能需要帮助才能完全理解或适当回应突发新闻故事的语调或内容。虽然人工智能生成的音频可能能在一定程度上复制情境意识的某些方面,但它仍然需要对人类语言和行为有深刻理解,以便在复杂和微妙的社会和情境背景中进行有效沟通。人类言辞传达非语言线索的能力:传达非语言线索的能力,例如面部表情和肢体语言,这对人工智能生成的音频来说很难复制。非语言线索在沟通中起着重要作用,因为它们可以为信息增添意义和背景。例如,讲话者可能使用面部表情来传达快乐、悲伤或惊讶等情绪。他们还可以使用肢体语言来强调特定观点或展示对某个陈述的赞同或反对。这些非语言线索对于人工智能生成的音频来说很难复制。此外,它们需要对人类心理和行为有一定程度的理解,这在人工系统中很难复制。人工智能生成的音频很难复制的另一个非语言沟通方面是幽默或讽刺。幽默和讽刺在很大程度上依赖于情境和语调,只有深刻理解人类语言和文化才能更容易理解。这使得人工智能生成的音频难以传达依赖于幽默或讽刺的信息,并使听众更难以与信息内容互动。总的来说,人类言辞传达非语言线索的能力是沟通的一个重要方面,有助于为信息增添深度和细微差别。虽然人工智能生成的音频可以被设计成在一定程度上表达某些情绪或非语言线索,但在复制人类言辞中的全部非语言沟通范围时仍存在局限。
生成式人工智能视频的差异! 根据使用的具体人工智能技术和视频的目的,生成的人工智能视频可能存在许多差异。以下是您可能遇到的一些可能差异:
- 质量
视频质量可能会根据使用的人工智能技术而有很大差异。一些人工智能系统可以生成高质量、逼真的视频,而其他人则可能产生质量较低且更明显是计算机生成的视频。人工智能生成的视频质量可以根据使用的具体人工智能技术和视频的目的而有很大差异。例如,一些人工智能技术比其他技术更先进,可以创建看起来非常逼真的高质量视频。相比之下,其他技术可能生成质量较低且更明显是计算机生成的视频。例如,一些人工智能技术可以生成看起来非常逼真和逼真的 3D 模型和动画,具有详细的纹理和照明,从而营造出深度和逼真感。这些技术通常用于电影和视频游戏制作,用于创建特效和 CGI 元素。另一方面,人工智能技术也设计用于更基本的视频制作,例如简单的动画或幻灯片。因此,这些技术可能不太复杂,生成的视频质量较低,对细节的关注较少,看起来更明显是计算机生成的。此外,人工智能生成的视频质量可能会受到诸如源材料(如图像或视频素材)的质量和用于生成视频的计算机的处理能力等因素的影响。一般来说,输入材料的质量越高,笔记本电脑的影响力越大,生成的视频质量就会越好。总的来说,尽管近年来人工智能技术在视频制作方面取得了长足进步,但生成的视频质量仍可能因使用的具体技术和视频的预期目的而有很大差异。
- 样式
人工智能生成的视频可以以各种风格创作,如卡通风格动画、3D 渲染或看起来逼真的实拍镜头。视频的类型将取决于所使用的具体人工智能技术和视频的预期目的。一些人工智能技术专门设计用于创建动画视频,范围从简单的 2D 动画到更复杂的 3D 动画。这些技术通常使用机器学习算法来分析现有动画,并根据它们识别的模式和风格创建新的动画。其他一些人工智能技术则专为创建看起来逼真的实拍镜头而设计,使用计算机视觉和图像处理等技术来操纵视频镜头并创作新场景。例如,一些人工智能技术可以替换视频的背景或添加特效,如爆炸或其他视觉效果。除了这些更传统的视频风格外,人工智能技术还可以创作独特和风格化的视频,不容易分类。例如,一些人工智能技术可以创作抽象动画或其他实验性技术,不一定要求逼真或象征性。总的来说,人工智能生成的视频的风格将取决于所使用的具体技术和视频的预期目的。鉴于人工智能和机器学习技术快速改进的速度,我们预计未来会看到更多富有创意和创新的人工智能生成视频形式。
- 内容
人工智能生成的视频可以创作各种内容,从教育视频到营销材料再到娱乐内容。视频的具体内容将取决于视频的目的和预期受众。人工智能生成的视频可以创作各种内容,取决于视频的预期目的。一些常见类型的人工智能生成视频内容包括:
-
教育视频:人工智能技术可以为各种学科创作教学视频,如语言学习、科学、历史等。这些视频可以融入动画、视觉辅助和其他元素,使内容更具吸引力和信息性。
-
营销材料:人工智能生成的视频可以为企业和品牌创作促销视频,如产品演示、解说视频和广告。这些视频可以针对特定受众定制,并利用数据分析来优化它们的效果。
-
娱乐内容:人工智能生成的视频也可以用于创作内容,如音乐视频、短片和网络系列。这些视频可以融合各种风格和技术,从实拍镜头到计算机生成的动画。
-
社交媒体内容:AI 生成的视频还可以为社交媒体平台(如 Instagram、TikTok 和 YouTube)创建内容。这些视频可以简短而引人入胜,利用流行趋势和标签来吸引更广泛的观众。
总的来说,AI 生成的视频的内容将取决于视频的具体目的和目标受众。随着 AI 技术日益复杂,我们预计会看到更多多样化和独特的素材。
- 定制化
一些人工智能技术允许高度定制,允许用户调整视频的各个方面,如摄像机角度、照明和背景。其他人工智能技术可能需要更多的定制选项。利用人工智能创建视频的优点之一是能够将内容定制给特定的受众或使用情况。人工智能技术可以分析数据和用户行为,创建个性化的视频内容,以满足个体的偏好和兴趣。例如,由人工智能驱动的视频广告可以针对特定的人口统计和兴趣群体,提供更有共鸣的内容。同样,人工智能生成的教育视频可以根据个人的学习风格和理解水平进行定制,以更具吸引力和易接受的方式呈现内容给每个学生。人工智能还可以创建响应用户输入和行为的交互式视频内容。例如,由人工智能驱动的视频游戏取决于玩家的技能水平;游戏可以调整难度级别或提供特定的反馈。总的来说,通过人工智能技术定制视频内容的能力可以提高内容的效果和吸引力,使其更吸引特定的受众和使用情况。随着人工智能技术的不断改进,我们可以预期会看到越来越复杂和个性化的视频内容。成本:创建人工智能生成的视频的成本可能会根据所使用的具体技术和视频的复杂性而有很大差异。一些人工智能系统可能价格不高,而其他人则需要巨大的投资。利用人工智能制作视频的最重要的优势之一是其效率。与传统的视频制作方法相比,由人工智能驱动的视频创作可以节省时间和资源。例如,传统的视频制作通常涉及大量的计划和协调工作,如寻找地点、选角和安排拍摄。相比之下,人工智能生成的视频可以使用预先存在的数据,如库存素材或预制模板,人工智能技术可以快速组装和编辑。此外,一旦一个人工智能系统已经被训练完成了一个特定的任务,它可以比人类更快地执行它。例如,一个被引入来创建动画的人工智能系统可以在几分钟内快速生成数百帧。一个人类动画师可能需要几个小时甚至几天才能制作出同样数量的内容。总的来说,人工智能生成的视频的效率可以节省大量的时间和资源,使其成为企业和个人寻求创建高质量视频内容的经济有效选项。此外,随着人工智能技术的不断发展,我们可以预期会看到更加高效和简化的视频制作过程。总的来说,人工智能生成的视频存在许多差异,具体的差异将取决于所使用的人工智能技术和视频的目的。除了上述讨论的差异外,还有一些其他值得注意的人工智能生成的视频的重要方面:
-
准确性:人工智能技术可以分析数据并以高度准确性创建视频,减少错误并提高内容质量。然而,重要的是要注意,人工智能生成的视频的准确性仅取决于它们所训练的数据,错误仍可能发生。
-
可扩展性:基于人工智能的视频创作可以扩展到快速高效地创建大量内容。这使其成为那些经常创作大量内容的企业和组织的宝贵工具。
-
创造力:虽然人工智能技术可以高精度高效地创建视频,但与人类创作者相比,它们仍需要提高创造力。人类创造力在塑造视频的整体概念和叙事中仍然很重要,人工智能技术最好用于支持和增强人类创造力,而不是完全取代它。
-
伦理:人工智能生成的视频引发了重要的伦理问题,特别是关于使用深度伪造技术创建故意误导或欺骗性视频。重要的是要考虑人工智能生成的视频对社会的潜在影响,并负责任和道德地使用这些技术。
人工智能生成的视频提供了许多好处和机会,从提高效率和可扩展性到增强个性化和准确性。因此,随着人工智能技术的发展,我们应该期待在未来看到更多独特和创造性的基于人工智能的电影创作应用。
撰写提示时的常见错误以下是撰写人工智能提示时的一些常见错误:
- 缺乏清晰度
在撰写人工智能提示时最典型的错误之一是需要更具体。这可能导致人工智能生成无关或不正确的回应。为了避免这种情况,在提示中尽可能详细和精确。撰写人工智能提示时的第一个错误是需要更多的清晰度。清晰度在撰写人工智能提示时至关重要,因为人工智能模型需要准确理解需要执行的任务。如果提示清晰而具体,人工智能模型可能会生成无关或不正确的回应。为了避免这种错误,您的提示应尽可能具体和简单。首先,定义您想解决的问题以及您期望人工智能模型执行的任务。使用简单的语言,避免可能会使人工智能混淆的复杂句子。此外,要明确指出人工智能模型应考虑的数据和应遵循的任何约束条件。例如,假设您希望人工智能模型为电子商务网站生成产品推荐。在这种情况下,您的提示应明确指出产品类型、目标受众以及任何其他相关信息。一个清晰的提示可能如下所示:
"为一名年龄在 25-35 岁、对健身感兴趣且第一次浏览我们网站的男性客户生成产品推荐。推荐在他的预算范围内且具有高客户评分的产品。"相比之下,一个不清晰的提示可能是这样的:"为我们的电子商务网站生成产品推荐。"第二个提示需要更具体,AI 模型可能需要帮助理解要推荐什么类型的产品或目标受众是谁。因此,AI 模型可能会生成无关或不正确的回应。写 AI 提示时清晰度至关重要。要具体,使用简单的语言,并提供尽可能多的信息,以帮助 AI 模型理解它需要执行的任务。
- 偏见数据
另一个常见的错误是使用部分数据来训练 AI。部分数据可能导致 AI 强化刻板印象和歧视。为了避免这种情况,请确保您的训练数据是多样化且无偏见的。部分数据可能导致强化刻板印象和偏见的 AI 模型。确保用于训练 AI 的数据是多样化且无偏见的至关重要,以避免这些问题。
AI 中的偏见可能来自多种来源,包括数据收集过程中的偏见、数据预处理和数据标记。例如,如果数据收集只包括特定人群的数据,那么当呈现其他群体的数据时,AI 模型可能需要改进。同样,如果数据预处理步骤删除了诸如种族或性别等重要特征,那么 AI 模型可能无法学会识别这些特征,导致偏见的响应。为避免这种错误,确保训练数据多样化且代表您试图解决的问题至关重要。这可能涉及从不同来源收集数据,并确保数据在不同人口统计方面平衡。还必须对数据进行标记以确保其无偏见。避免偏见的另一种方法是使用诸如数据增强之类的技术,其中 AI 模型在相同数据的变体上进行训练以增加其多样性。此外,关键是持续监控 AI 模型的性能,并识别和解决可能出现的任何偏见。使用部分数据来训练 AI 模型可能导致有害和歧视性的响应。为避免这种错误,请确保训练数据多样化且无偏见,并使用诸如数据增强和持续监控等技术来解决可能出现的任何偏见。
- 过拟合
过拟合是人工智能中的一个常见问题,即模型在训练数据上表现良好,但在新数据上需要改进。当模型在有限的数据集上训练时,就会出现这种情况。为了避免这种情况,请确保您的训练数据集多样化且代表性强,与您尝试解决的问题相关。过拟合发生在人工智能模型在有限数据集上训练得太好,变得过于特定于该数据集。这意味着模型在训练数据上表现良好,但在新数据上需要改进,即测试数据。过拟合是人工智能中的一个常见问题,特别是当训练数据集较小或有限时。例如,假设一个人工智能模型在一小组狗和猫的图像数据集上训练。那么,它可能会过度拟合于数据集中的特定概念,并且可能需要在新的狗和猫图片上表现更好。为了避免过拟合,确保训练数据集多样化且代表性强至关重要。数据集越多样化,人工智能模型处理新的和多样化数据的能力就越强大。此外,使用正则化等技术来防止过拟合,通过对模型添加惩罚来限制参数数量也是至关重要的。另一种避免过拟合的技术是交叉验证,它涉及将数据集分成多个子集,并在每个子集上训练模型,同时使用其他子集进行测试。这使模型能够更好地泛化到新数据,并避免过拟合。过拟合是人工智能中的一个常见问题,可能导致在新数据上表现不佳。为了避免过拟合,请确保训练数据集多样化且代表性强,使用正则化技术,并考虑使用交叉验证来提高模型对新数据的泛化能力。
- 设计不良的提示
你的提示设计也会影响人工智能响应的质量。设计不佳的提示可能会让人工智能感到困惑或误导,导致质量低劣的响应。为了避免这种情况,设计清晰、具体和明确的提示。此外,设计良好的提示可以导致人工智能模型提供准确或偏见的答案。人工智能模型依赖于提供给它们的提示来生成解决方案,如果这些提示能够更好地设计,人工智能模型可能会生成相关或准确的答案。设计不佳的提示也可能导致人工智能模型产生偏见的响应。例如,包含有性别化语言的提示可能导致人工智能模型生成延续性别刻板印象的部分响应。为了避免这种错误,至关重要的是确保提供给人工智能模型的提示设计良好且没有偏见。这涉及考虑提示中使用的语言、提示将被使用的上下文以及可能存在的偏见。解决这个错误的一种方法是让多样化的利益相关者参与设计提示,包括来自可能受到人工智能模型响应影响的社区的个人。这有助于确保提示适用于特定的上下文,并且可以识别和解决潜在的偏见。另一种避免这种错误的方法是使用自然语言处理等技术分析提示并识别潜在的偏见。这有助于确保提示设计良好且没有偏见,从而导致人工智能模型提供更准确和相关的响应。设计不佳的提示可能导致人工智能模型提供不准确或带有偏见的响应。为了避免这种错误,至关重要的是确保提供给人工智能模型的提示设计良好且没有偏见,并让多样化的利益相关者参与提示的设计。
- 缺乏上下文
AI 模型依赖上下文来生成准确的回复。有了上下文,AI 可能会生成相关的回复。为了避免这种情况,在您的提示中提供尽可能多的上下文。AI 模型需要上下文和信息来创建准确和适当的回复。因此,只要提供足够的上下文和信息,AI 模型就可能生成相关、正确的答案。例如,考虑一个设计用于生成客户服务询问回复的 AI 模型。如果 AI 模型有足够的关于客户问题或问题背景的信息,它可能会生成相关或准确的回复。在设计 AI 提示时,提供足够的上下文和信息至关重要以避免这个错误。这涉及到了解开发 AI 模型的具体问题以及生成准确和相关回复所需的信息和上下文。解决这个错误的一种方法是让特定背景的利益相关者参与到 AI 模型的开发中。这有助于确保 AI 模型适用于特定的背景,并且提示提供了足够的信息和上下文,使得 AI 模型能够生成准确和相关的回复。避免这个错误的另一种方法是使用自然语言处理等技术来分析提示并识别信息或上下文中的差距。这有助于确保提示提供了足够的信息和上下文,使得 AI 模型能够生成准确和相关的回复。在 AI 提示中不提供足够的上下文或信息可能会导致 AI 模型生成无关或不准确的回复。为了避免这种错误,在设计 AI 提示时提供足够的上下文和知识至关重要,并且让特定背景的利益相关者参与到 AI 模型的开发中。未考虑道德影响:AI 提示还应考虑道德影响,如隐私、公平性和偏见。不考虑这些因素可能会导致有害的 AI 模型。为了避免这种情况,考虑您的提示和您正在训练的 AI 模型的道德影响是很重要的。它不考虑 AI 的回复的道德影响。AI 模型可以对个人和社会产生重大影响,因此在设计 AI 提示时考虑这些影响是至关重要的。AI 模型可以延续偏见,歧视某些群体,甚至被用来伤害个人。例如,一个在招聘过程中对女性进行偏见的 AI 模型可能会在工作场所延续性别歧视。为了避免这种错误,在设计 AI 提示时,考虑 AI 模型的回复的道德影响是至关重要的。这涉及到理解 AI 模型的工作方式以及其回复可能对个人和社会产生的影响。解决道德考虑的一种方法是在 AI 模型的设计中包括道德准则和原则。例如,透明度、问责制和公平性原则可以指导开发符合道德和责任的 AI 模型。此外,让来自 AI 模型回复可能影响的社区的不同利益相关者参与到 AI 模型的设计中是至关重要的。未考虑 AI 将被使用的上下文:AI 模型被开发来解决特定背景下的特定问题。因此,在其他背景下,相同的 AI 模型可能具有不同的道德影响和后果。例如,一个开发用于帮助识别潜在贷款违约者的 AI 模型在发达国家和发展中国家使用时可能具有不同的道德影响。此外,用于训练模型的因素可能不同,用于开发模型的数据可能存在偏见,从而导致不同的道德影响。为了避免这种错误,在设计 AI 提示时考虑将要使用 AI 的上下文是至关重要的。这涉及到了解社会、文化和经济因素可能影响 AI 模型开发和使用的因素。解决上下文的一种方法是让特定背景的利益相关者参与到 AI 模型的开发中。这有助于确保 AI 模型适用于特定的背景,并且理解 AI 模型的回复的道德影响和后果。此外,在特定背景下,考虑 AI 模型回复的潜在意外后果是至关重要的。例如,一个用于优化供应链的 AI 模型可能会对环境、劳工实践和人权产生意想不到的后果。不考虑 AI 模型将被使用的上下文可能会导致意想不到的后果和道德影响。为了避免这种错误,在设计 AI 提示时考虑上下文,并让特定背景的利益相关者参与到 AI 模型的开发中。
- 精炼和找到正确的提示的过程在人工智能中精炼和找到正确的提示取决于具体的任务和应用。尽管如此,以下一般程序可以被遵循:
-
- 定义任务
- 明确定义你希望人工智能系统执行的任务。例如,如果你希望人工智能生成文本,你必须确定你想要的文本。定义任务对于找到人工智能系统的正确提示至关重要。它涉及指定你希望人工智能系统做什么以及你希望它如何做。这一步提供了对需要解决的问题的清晰理解,并为开发人工智能系统奠定了基础。确定任务需要仔细分析问题和相关事实。例如,假设你希望人工智能系统生成文本。在这种情况下,你必须指定你希望生成的材料类型,并开发新闻文章、产品描述或社交媒体帖子。同样,如果你希望人工智能系统对图像进行分类,你需要定义它应该能够组织哪些类型的图像,比如动物、车辆或建筑物。考虑人工智能系统的目标受众也是至关重要的。这包括了解他们的需求、期望和限制。例如,设计帮助医生诊断疾病的人工智能系统应该考虑到医生时间有限,需要准确简洁的信息。定义任务是一个迭代的过程,随着更多信息的获取,需要不断完善和修订问题定义。这一步为人工智能系统的开发奠定了基础,并为后续过程中的行动提供了明确方向。
-
- 识别数据
确定 AI 系统需要学习的数据。这可能是文本、图像、音频或其他数据类型。确定数据对于找到 AI 系统的正确提示至关重要。这涉及确定 AI 系统学习和做出决策所需的数据。所需的数据类型将取决于 AI 系统设计的具体任务。例如,如果您正在开发一个用于识别图像中物体的 AI 系统,您将需要一个大量的图像数据集,其中标记了它们包含的物体。同样,如果您正在开发一个用于预测股票价格的 AI 系统,您将需要一个大量的历史股票价格和相关数据的数据集。确定 AI 系统的正确数据可能是一项具有挑战性的任务。数据必须代表任务并涵盖各种场景。数据质量也很重要,因为低质量的数据可能导致 AI 系统性能不佳。有时,收集和标记新数据以训练 AI 系统可能是必要的。这可能是耗时和资源密集型的,但确保 AI 系统有效可能是必要的。一旦确定了数据,必须为在 AI 系统中使用做好准备和预处理。这可能涉及清理和格式化数据,将其转换为适当的格式,并将其分割为训练、验证和测试集。确定正确的数据对于找到 AI 系统的正确提示至关重要。数据的质量和适用性将显著影响 AI 系统的性能,因此在项目开始时仔细考虑数据需求至关重要。确定数据对于找到 AI 系统的正确提示至关重要。这涉及确定 AI 系统学习和做出决策所需的必要数据。所需的数据类型将取决于 AI 系统设计的具体任务。例如,如果您正在开发一个用于识别图像中物体的 AI 系统,您将需要一个大量的图像数据集,其中标记了它们包含的物体。同样,如果您正在开发一个用于预测股票价格的 AI 系统,您将需要一个大量的历史股票价格和相关数据的数据集。
- 选择一个预训练的语言模型
为 AI 系统找到理想的提示涉及选择一个预训练的语言模型。一个预先在大量文本数据语料库上训练过的 AI 模型。它可以执行各种与语言相关的任务,包括翻译、提问和创建文本。使用像 GPT-3、BERT 和 Open Ai 的 Codex 这样的预训练语言模型是可能的。然而,每个模型都是为特定用例而创建的,并且具有优势和劣势。在选择预训练语言模型时,需要考虑你希望 AI 系统完成的工作类型、你拥有的数据集大小以及所需的定制程度。例如,如果你希望 AI 系统生成文本,那么 GPT-3 是一个强大且流行的模型,可以以各种风格和格式生成高质量的文本。同样,如果你希望 AI 系统进行问答,BERT 是一个在问答方面具有出色准确性的流行模型。评估运行预训练语言模型所需的计算资源也是至关重要的。例如,一些模型具有更高的计算要求,并且可能需要更专业的技术,如图形处理单元(GPU)才能更有效地运行。预训练语言模型有时可能需要调整以提高其在特定任务或数据集上的性能。因此,需要在与工作相关的较小数据集上重新训练模型。选择合适的预训练语言模型对于确定 AI 系统的最佳提示至关重要。在选择预训练语言模型时,重要的是考虑任务类型、数据集大小和所需的计算资源。
生成式人工智能简介生成式人工智能是一种革命性技术,使算法个体能够开发以前依赖人类的模型,从而产生创造性解决方案,不受人类认知和经验引起的错误影响。人工智能中的这种新技术确定原始模型输入,以生成展示训练数据特征的真实世界产品。麻省理工技术评论指出,生成式人工智能是人工智能的一个潜在方向。生成式人工智能通过对所有数据集进行自主学习,提供更高质量的结果。因此,与特定项目相关的挑战减少了,机器学习算法被训练以避免偏见,并允许机器人理解抽象概念。高质量的外国咨询公司高德纳提到了生成式人工智能在 2022 年重要趋势列表中,并强调企业可以以两种方式使用这种创新技术:与企业合作以增强当前的创新工作和降低:开发自动化以帮助人类更好地执行创造性任务。例如,游戏设计师可以利用生成式人工智能创建突出他们喜好和不喜欢的地牢,比如“有点像这个”或“不太像那个”。作为业务流程的重要组成部分:生成式人工智能可以在很少人类参与的情况下产生无数创意作品。只需设置上下文,结果就会独立生成。生成式人工智能是利用机器学习模型根据训练集创建新输出的人工智能的一部分。换句话说,生成式人工智能使算法能够像人类一样开发事物,而不是人工智能系统的标准分析性质。这些输出范围从深度伪造到 AI 聊天机器人,文本到图像和文本到视频的创作,音乐,绘画等等。由于近年来硬件的改进和新的机器学习方法,生成式人工智能的输出也变得如此出色,甚至更好。本文简要介绍了生成式人工智能的基础和应用,以及它们如何影响您的个人生活和业务。人类擅长分析事物。但机器更强大。设备可以分析一组数据并找到适用于许多用例的模式,无论是欺诈还是垃圾邮件检测,预测交付的预计到达时间,还是预测 TikTok 将展示什么等等;它们越来越擅长执行这些任务。这就是所谓的“分析人工智能”(Analytical AI)或传统人工智能。但人类不仅擅长分析事物,我们还擅长创造。我们可以写诗,设计产品,开发游戏和编写代码。直到最近,机器无法在创造性工作方面与人类竞争——它们局限于分析和机械性认知劳动。然而,设备机器正在改进,可以创造感性和美丽的事物。这个新类别是“生成式人工智能”,它指的是制造新事物而不是评估已经存在的事物。生成式人工智能不仅变得更快更便宜,而且在某些情况下,它甚至可以比人类创造出更好的东西。需要原创人类工作的每个行业都面临着重塑,从社交媒体到游戏,从广告到建筑,从编码到图形设计,从产品设计到法律,从营销到销售。这些行业中的一些功能可能完全被生成式人工智能取代,而其他部门更有可能在人机协作带来更频繁的创造循环的影响下蓬勃发展,但范围广泛。因此,生成式人工智能应该在许多终端市场释放更好、更快和更便宜的创造力。我们梦想生成式人工智能将把创作和知识工作的边际成本降低到零,创造极高的劳动生产率、经济价值和相应的巨大市场价值。生成式人工智能的领域——知识工作和创造性工作——涉及数十亿工作者。生成式人工智能可以使这些工作者至少提高 10%的效率和创新能力:他们将比以前更快、更高效、更有能力。因此,生成式人工智能有潜力创造数十亿美元的经济价值。
- 撰写提示
撰写提示,为 AI 系统提供执行任务所需的上下文和信息。提示应具体而简洁。提示是 AI 系统用来生成其输出的输入。要开发提示,您必须仔细设计 AI 系统将处理并用作输入的文本。这可能涉及选择适当的语言,构建文本结构,并定义必要的变量或参数。
- 测试提示
通过向 AI 系统提供提示并评估其输出来测试提示。如果结果出乎意料,则修改提示并再次测试。一旦开发完成,必须对其进行彻底测试以产生期望的结果。这可能涉及使用示例数据测试提示,分析结果并对其进行改进以提高其准确性和有效性。这是找到 AI 系统正确提示的最后一步。它涉及设计提供给预训练语言模型以执行所需任务的输入。
- 制作提示
制作提示涉及多个考虑因素,包括输入格式,信息长度和所需的具体级别。立即需要设计以从预训练语言模型中引出所需的输出。例如,如果您希望 AI 系统生成产品描述,则提示可以包括有关产品特性,优势和目标受众的信息。同样,如果您希望 AI 系统回答问题,则提示和任何相关的上下文或信息都可以包括问题。测试和改进提示对于确保其产生所需的输出至关重要。这可能涉及运行提示通过预训练语言模型并审查产出,调整提示并重复该过程直到获得所需的输出。在某些情况下,可能需要向预训练语言模型提供额外的指导以提高其在特定任务上的性能。例如,这可能涉及提供所需输出的示例或使用经过微调的预训练语言模型。找到 AI 系统正确提示的最后一步是制作提示。它涉及设计提供给预训练语言模型以执行所需任务的输入,并测试和改进提示以确保其产生所需的输出。
- 迭代
持续改进和测试提示,直到您对 AI 系统的输出感到满意。迭代和改进提示是一个持续的过程,涉及使用反馈和评估结果来提高 AI 系统的性能。因此,持续监控和改进提示以确保 AI 系统表现如期并达到所需的性能标准是至关重要的。迭代和改进提示可能涉及:
-
调整到过程中的任何先前步骤,包括识别任务。
-
识别数据。
-
选择预训练语言模型。
-
制定提示。
例如,假设评估结果表明预训练语言模型的表现不如预期。在这种情况下,可能需要选择不同的模型或对现有模型进行微调。同样,假设评估结果表明提示未产生预期的输出。在这种情况下,可能需要调整提示或为预训练语言模型提供额外的指导。迭代和完善提示是任何 AI 系统开发过程的重要组成部分,因为它使系统能够适应新的输入并随着时间改善其性能。它还使系统能够在基础数据和技术发展的同时保持有效。迭代和完善提示是一个持续的过程,涉及使用反馈和评估结果来改善 AI 系统的性能。因此,持续监控和完善提示以确保 AI 系统表现如期并符合所需的性能标准至关重要。
- 调整模型
如果预训练模型表现不佳,您可以根据特定任务和数据对其进行训练。微调 AI 模型对于完善并找到 AI 系统的正确提示至关重要。微调涉及调整预训练语言模型以适应特定任务和数据。这可能包括更新模型的参数或在额外数据上训练它。微调过程可能耗时,并需要对基础技术有很好的理解。然而,它可以极大地提高 AI 系统的性能。微调可以帮助模型更好地理解任务和数据的细微差别,从而产生更准确和相关的输出。微调可以使用各种技术进行,包括迁移学习,其中预训练模型被用作起点,然后调整以更好地适应特定任务和数据。另一种方法是在特定任务的额外数据上训练模型。这可以帮助模型更好地理解工作的细微差别并提高其性能。在微调模型之前建立清晰的评估指标是至关重要的,以确保调整改善系统的性能。评估指标可以包括准确性、相关性、连贯性和其他关键因素。微调 AI 模型对于完善并找到 AI 系统的正确提示至关重要。它涉及调整预训练语言模型以适应手头的特定任务和数据,并可以提高系统的性能。微调可以使用各种技术进行,并需要清晰的评估指标以确保调整改善系统的性能。
- 评估性能
评估 AI 系统在您的任务和数据上的表现。如果表现不佳,您可能需要调整提示或进一步微调模型。因此,在优化提示并确保 AI 系统按预期执行方面,评估输出至关重要。考虑到生产过程涉及审查 AI 系统生成的工作并评估其准确性、相关性和连贯性。有几种评估 AI 系统输出的方法,包括手动评估、自动化指标和用户反馈。手动评估涉及让人类评估员审查生产并就其质量提供反馈。自动化指标涉及使用预定义的指标,如精确度、召回率和 F1 分数,来评估输出的准确性。最后,用户反馈包括收集 AI 系统用户的反馈,以确定他们对生产的满意程度。评估结果是一个迭代过程,可能需要多轮的优化才能达到期望的表现。这可能涉及调整提示、微调预训练语言模型或整合额外数据。在项目开始时建立清晰的评估标准和指标,确保 AI 系统达到期望的性能标准。继续随时间评估 AI 系统的输出也很重要,以确保其继续按预期执行。评估输出在优化提示并确保 AI 系统按预期执行方面至关重要。它涉及使用各种方法,包括手动评估、自动化指标和用户反馈,审查由 AI 系统生成的工作并评估其准确性、相关性和连贯性。
- 部署模型
在您对 AI 系统的性能感到满意后,您可以在应用程序中使用该系统。部署 AI 系统涉及使系统可供最终用户使用。这可能包括将系统集成到现有产品或服务中,或基于 AI 系统创建一个新产品。在部署系统之前,确保系统稳定、可靠和安全至关重要。这可能涉及对系统进行压力测试,以确保其能够处理大量流量,并实施安全措施以防止未经授权的访问或攻击。部署应该是受控和逐步的,以确保问题或错误在变得普遍之前被及早发现和解决。这可能包括最初将系统发布给一小群用户,然后逐渐扩大到更广泛的用户群。部署 AI 系统涉及使其可供最终用户使用。在部署之前,确保系统稳定、可靠和安全至关重要。部署应该是受控和逐步的;持续的监控和维护是必要的,以确保系统继续按预期运行。
- 文档
文档对于完善和找到人工智能系统的正确提示至关重要。文档包括记录整个过程中所做的决定和行动,包括任务、数据、预训练语言模型、提示和评估结果。文档具有几个重要目的。首先,它使开发人员能够跟踪项目的进展并找到需要进一步工作的领域。它还提供了整个过程中所做决定的记录,这些记录可以用来指导未来项目或解释特定决定背后的推理。文档还可以帮助确保人工智能系统保持透明和负责。通过记录整个过程中所做的决定,开发人员可以展示系统是如何开发的以及其预期运行方式。这可以帮助与利益相关者建立信任,并确保系统被道德和负责任地使用。文档应该清晰、简洁和有组织,以便于访问和理解。它应包括有关任务、数据、预训练语言模型、提示、评估结果和其他相关信息的细节。它还应包括与项目相关的任何假设、限制或不确定性。文档对于完善和找到人工智能系统的正确提示至关重要。它涉及记录整个过程中所做的决定和行动,并具有跟踪进展、指导未来项目和确保透明和负责的重要目的。重要的一点是,完善和找到人工智能系统的正确提示是一个迭代过程。这意味着涉及多个开发周期、测试和评估,并在每个阶段进行调整和改进。此外,对于人工智能系统的预期用例和受众有清晰的理解至关重要,因为这可以帮助指导开发过程并确保系统满足用户的需求。最后,在完善和找到人工智能系统的正确提示过程中还应考虑伦理问题。这可能涉及考虑偏见、隐私和问责制等问题,并采取措施减轻系统可能产生的任何负面影响。在开发人工智能系统时,包括完善和找到正确提示在内,伦理考虑是至关重要的。以下是一些需要牢记的关键伦理考虑:
-
偏见:人工智能系统可能继承其开发人员和训练数据的偏见和成见。识别和解决这些偏见对于确保系统对所有用户公平和公正至关重要。
-
隐私:人工智能系统可以收集和存储大量个人数据,这些数据可能是敏感或机密的。实施强大的数据保护和安全措施对于保护这些数据并确保用户隐私至关重要。
-
透明度:人工智能系统可能复杂且难以理解,引发对问责和透明度的担忧。重要的是清楚解释系统的工作原理以及决策如何制定,以建立用户信任并确保系统负责任。
-
人类监督:人工智能系统可能出现错误或产生意外结果,可能造成严重后果。必须有人类管理和干预机制来监控和纠正系统在必要时的行为。
-
社会影响:人工智能系统对社会可能产生重大影响,包括影响就业、医疗保健和公共安全。必须考虑系统可能带来的社会影响,并采取措施减轻任何不利影响。
总的来说,道德考虑应该是任何人工智能系统开发过程中的一个重要部分,包括完善和找到正确的提示。这可以帮助确保系统公平、透明和负责任,并对社会产生积极影响。
生成式人工智能的限制生成式人工智能指的是可以创建类似人类生成内容(如图像、文本或音乐)的人工智能系统。虽然生成式人工智能展示了令人印象深刻的能力,但有几个限制需要考虑:
- 质量
生成式人工智能输出的数量可能差异很大。因此,确保高质量的工作可能具有挑战性,特别是对于生成逼真图像或撰写连贯散文等复杂任务。生成式人工智能输出的质量是该技术的主要限制之一。虽然生成式人工智能在近年取得了重大进展,但生成内容的质量可能差异很大。因此,确保高质量的输出可能具有挑战性,特别是对于生成逼真图像或撰写连贯散文等复杂任务。影响生成式人工智能输出质量的主要因素之一是用于训练人工智能模型的训练数据的质量。生成式人工智能模型需要高质量的训练数据来学习模式并生成类似输入数据的内容。因此,如果训练数据存在偏见、不完整或质量低劣,人工智能模型将反映这些限制。影响生成式人工智能输出质量的另一个因素是任务的复杂性。一些任务,如生成简单图像或短文本片段,对生成式人工智能模型可能相对容易。相反,其他任务,如开发高质量图像或长篇散文,可能需要更多工作。此外,生成式人工智能输出的质量还可能受到人工智能模型本身的设计和架构的影响。不同的人工智能模型可能更适合各种任务,一些模型可能根据手头任务的具体要求表现更好。虽然生成式人工智能展示了生成新内容的令人印象深刻的能力,但输出质量是一个必须考虑的重要限制。因此,需要进一步研究和开发以改善生成式人工智能输出的质量,并制定训练和设计生成式人工智能模型的新方法。
- 训练数据
生成式人工智能模型需要大量的训练数据来学习模式并生成内容。如果训练数据存在偏见或不完整,人工智能模型将反映这些偏见和限制。生成式人工智能的第二个限制与训练数据的质量和可用性有关。生成式人工智能模型需要大量的训练数据来学习模式并生成类似输入数据的内容。然而,如果训练数据存在偏见、不完整或质量低劣,人工智能模型将反映这些限制。例如,假设一个生成式人工智能模型是在仅包含白人男性照片的图像数据集上训练的。如果是这样,该模型可能难以生成女性或有色人种的图像。同样,如果一个语言模型是在仅包含正式语言的文本语料库上训练的,它可能需要帮助生成更口语化或非正式的语言。此外,获取高质量的训练数据可能具有挑战性,特别是对于特定领域或应用。例如,获取一组大型且多样化的医学图像数据集来训练医学成像中的生成式人工智能模型可能是困难的。这可能限制生成式人工智能应用于特定领域或应用的能力。此外,使用训练数据可能涉及与伦理有关的问题,特别是如果数据是在未经个人或群体同意的情况下获取的。在某些情况下,使用训练数据可能引发隐私问题或违反与数据保护相关的法规或法律。为了解决这一限制,研究人员正在探索新的数据增强、迁移学习和无监督学习技术,这些技术可能有助于减少所需的训练数据量或生成更多样化和代表目标领域的合成数据。此外,研究人员正在努力开发确保用于训练生成式人工智能模型的训练数据是无偏见且高质量的方法。
- 创造力
尽管生成式人工智能可以创建类似于人类创作的内容,但它无法复制人类的创造力和想象力。它所训练的数据限制了 AI 的能力,无法生成超出该数据范围的内容。例如,一个在景观图像数据集上训练的生成式 AI 模型可以生成类似于训练数据中的图像的新图像。然而,AI 模型无法开发出完全新颖和原创的景观,这些景观在训练数据中没有任何图像。此外,生成式 AI 无法超越输入数据的限制生成内容。这意味着生成式 AI 只能创造新颖的内容或融入输入数据中已有的新想法或概念。这种限制在创意领域尤为重要,如艺术、音乐和写作,这些领域高度重视创造力和独创性。尽管生成式 AI 可以在这些领域生成新内容,但它可能需要帮助来创造新颖的内容或突破以往的界限。为了解决这一限制,研究人员正在探索将生成式 AI 与强化学习或进化算法等其他类型结合的新技术,这可能使生成式 AI 能够探索新颖和创新性的解决方案。此外,研究人员正在开发新模型,这些模型融入了更复杂形式的创造力,例如生成包含隐喻、讽刺或其他语言使用复杂条件的内容的能力。然而,需要指出的是,在这些领域仍然需要取得重大进展,才能使生成式 AI 真正匹敌人类的创造能力。
- 理解上下文
生成式人工智能模型需要帮助理解它们生成内容的上下文。例如,语言模型可能能够创建连贯的句子,但可能需要帮助理解文本的语气或意图。生成式人工智能的理解上下文限制指的是准确理解技术运作的社会、文化和经济背景的挑战。这是因为生成式人工智能在由各种因素塑造的复杂和动态社会系统中运作。为了开发有效和负责任的生成式人工智能模型,关键是理解它们将被使用的背景以及用户的需求和偏好。这需要一种跨学科的方法,汲取来自各个领域的专业知识,包括计算机科学、心理学、社会学、伦理学和法律。例如,为医疗保健开发的生成式人工智能模型必须考虑围绕患者数据和医疗隐私的伦理和监管考虑,以及患者和医疗专业人员的需求和偏好。同样,为创意产业开发的生成式人工智能模型必须考虑不同受众和社区的文化和审美价值观,以及围绕知识产权和版权的法律和伦理考虑。理解上下文的主要挑战之一是社会系统的复杂性和变化性。例如,不同的社会和文化有不同的规范、价值观和偏好,这些可能随时间变化。此外,生成式人工智能可能会产生难以预测的意外后果,并且可能以不可预测的方式与其他社会系统互动。采用协作和迭代的方法来开发和部署生成式人工智能,涉及与来自不同背景和观点的利益相关者进行持续对话和参与,对于解决这一限制至关重要。这可以帮助识别潜在的挑战和风险,并制定负责任和有益的管理策略。采用反映社会多元观点和价值观的透明和负责任的治理机制至关重要。这可以确保生成式人工智能的开发和部署与伦理和社会规范一致,并促进共同利益。
- 可复现性
从一个生成式 AI 模型中复制相同的输出可能是具有挑战性的,即使使用相同的输入。这可能使得在需要一致结果的应用中使用生成式 AI 模型变得困难。生成式 AI 的可复现性限制指的是复制生成式 AI 模型效果的挑战。此外,生成式 AI 模型通常复杂,并涉及许多参数,这使得产生相同结果或比较不同模型的性能变得困难。这种可复现性限制可能会产生重大后果,特别是在医疗保健等领域,生成式 AI 模型的可靠性和一致性至关重要。在医疗保健领域,生成式 AI 用于医学诊断、药物发现和治疗计划任务。这些模型的准确性和一致性对患者安全和有效治疗至关重要。因此,采用透明和可复现的方法来开发和部署生成式 AI 对解决这一限制至关重要。这包括采用标准化的报告和评估程序,使得不同模型的结果可以进行比较和复制。改善可复现性的一种方法是开发标准化的基准和数据集,用于评估和比较不同生成式 AI 模型的性能。这些基准可以用于评估其他模型在日常任务中的性能,如图像或语音识别。此外,它们可以为评估不同模型的性能提供一个共同的标准。改善可复现性的另一种方法是采用开源开发实践,使得用于开发生成式 AI 模型的源代码和数据公开可用。这可以使其他研究人员复制和建立在他人工作基础上,并促进该领域的合作和创新。此外,开发解释和说明生成式 AI 模型结果的方法至关重要。这可以帮助识别模型中的错误或偏见来源,并提高研究人员和用户理解和信任模型结果的能力。总的来说,改善生成式 AI 模型的可复现性对确保技术的可靠性和有效性,促进对其开发和使用的信任和透明度至关重要。
- 伦理关切
生成式人工智能可以创造出具有深远伦理影响的虚假内容,例如深度伪造视频或虚假新闻文章。因此,考虑到生成式人工智能技术被滥用可能导致的潜在危害是至关重要的。生成式人工智能的伦理关注限制指的是在开发和使用生成式人工智能时遵循伦理和道德原则的挑战。例如,生成式人工智能可能引发关于偏见、公平性、隐私、问责和透明度的伦理关注。生成式人工智能的主要伦理关注之一是偏见。生成式人工智能模型的好坏取决于它们所训练的数据,如果数据存在偏见,模型也会存在偏见。这可能导致个人和歧视性的输出,特别是在招聘、贷款和刑事司法领域,生成式人工智能经常被应用。生成式人工智能的另一个伦理关注是公平性。生成式人工智能模型可能会延续和放大现有的社会和经济不平等,特别是如果训练数据反映了这些不平等。这可能导致不公平和不平等的结果,例如对医疗保健、教育或就业机会的不平等获取。隐私是生成式人工智能的另一个伦理关注。生成式人工智能模型可以收集和处理大量个人数据,包括敏感和机密信息。这可能引发对数据所有权、数据保护和数据泄露的担忧,特别是在医疗保健和金融领域。问责和透明度也是生成式人工智能的伦理关注。生成式人工智能模型可能复杂且不透明,使人难以理解它们的工作方式或如何做出决策。
这可能引发对问责的担忧,特别是在刑事司法或国家安全等领域,生成式人工智能做出的决定可能产生重大后果。因此,采取负责任和道德的方式创建和应用生成式人工智能以克服这些道德问题至关重要。这包括采纳用于开发和部署生成式人工智能的道德准则和标准,并开发机制以确保技术使用的透明度和问责制。此外,进行持续的对话和合作,涉及开发人员、用户、政策制定者和普通公众,对确保生成式人工智能符合道德和道德原则,并促进共同利益至关重要。
- 控制和可解释性
生成式人工智能模型可以自主生成内容,这让人类难以控制或理解输出。例如,一个训练用于生成文本的生成式人工智能模型可能会生成具有攻击性、偏见或不当内容的文本,这可能难以预料或控制。同样,一个训练用于生成图像的生成式人工智能模型可能会创建包含敏感或机密信息的图像,如果这些图片被公开发布,可能会产生负面后果。此外,生成式人工智能模型在生成意外或异常内容时可能难以解释。人类可能难以理解人工智能模型是如何得出特定输出的,这使得难以检测和纠正生产中的错误或偏见。研究人员正在探索新技术,以控制和解释生成式人工智能的输出,以解决这一限制。例如,研究人员正在努力开发方法,通过特定输入参数对生成式人工智能模型的输出进行调节,这有助于确保生产与用户的目标和价值观保持一致。此外,研究人员正在探索新方法,生成解释和可视化生成式人工智能模型如何得出各自的输出。这可以增加模型的可解释性,使人类更容易检测和纠正生产中的错误或偏见。然而,需要指出的是,在这些领域取得重大进展之前,生成式人工智能才能在控制和可解释性至关重要的情境中有效使用,例如在医疗保健、金融或国家安全领域。
- 滥用和意外后果的潜在可能性
生成式人工智能可以用于积极和消极的目的。然而,预测技术将如何被使用或可能出现的意外后果可能是具有挑战性的。例如,生成式人工智能模型可以生成令人信服的深度伪造,逼真但虚假的图像、视频或音频,可以用来欺骗或操纵人们。深度伪造可以被用于恶意目的,比如传播虚假信息或制造假证据,并且具有重大的社会和政治后果。此外,生成式人工智能模型可以用于自动化以前由人类完成的任务,这可能导致工作岗位的替代和经济动荡。虽然生成式人工智能可以创造新的机会并提高生产力,但如果技术的好处没有公平分配,也可能导致不平等和社会动荡。为了解决这一局限性,有必要为生成式人工智能的使用制定道德准则和法规,并提高用户和公众对技术的潜在风险和好处的意识。此外,重要的是投资于研究探索生成式人工智能的社会、经济和政治影响,并让来自不同背景的利益相关者参与制定和部署技术。通过这样做,我们可以确保生成式人工智能被负责任和有益地使用,造福社会。
- 隐私和安全
生成式人工智能模型需要大量数据进行有效训练,如果数据包含敏感或个人信息,可能会引发隐私问题。例如,一个在医疗数据上训练的生成式人工智能模型可能会收集有关个人医疗状况的敏感信息,如果模型被黑客攻击或泄露,这些信息可能会被利用。同样,一个在金融数据上训练的生成式人工智能模型可能包含有关个人财务交易的敏感信息,这可能被用于欺诈或身份盗窃。此外,生成式人工智能模型可能容易受到对抗性攻击的影响,这涉及操纵输入数据以生成意外或恶意输出。敌对攻击可以制造深度伪造,绕过安全系统,危害隐私,并且难以检测或防御。为了解决这一局限性,重要的是为生成式人工智能制定强大的数据隐私和安全措施,包括对敏感数据进行匿名化或加密的技术,以及检测和防御对抗性攻击的方法。此外,重要的是确保生成式人工智能模型以透明和负责任的方式开发和部署,具有精确的数据使用和治理指南。通过解决这些隐私和安全问题,我们可以确保生成式人工智能以负责任和值得信赖的方式使用,保护个人和整个社会的隐私和安全。
结论总的来说,生成式人工智能已经出现在各个领域中,如自然语言处理、计算机视觉和创意艺术。这项技术使机器能够从大型数据集中学习模式,并生成新内容,往往难以区分是否为人类生成的内容。使这项技术快速发展的一个关键因素是使用提示。提示是提供给生成式人工智能模型的输入,以引导它们生成特定内容。它们作为模型的起点,并帮助其专注于特定主题或风格。提示可以从几个词到整个句子,生成从短篇故事到图像等任何内容。在生成式人工智能方面,使用提示具有几个优势:
-
提示使即使没有技术专长的人也能够使用生成式人工智能模型生成内容。
-
提示使生成式人工智能模型能够专注于为特定上下文或应用程序生成相关和有用的内容。
-
提示有助于减少生成式人工智能模型生成不当或有害内容的风险。
然而,需要注意的是,提示只是生成式人工智能面临的一些挑战的一个神奇解决方案。它们有其局限性,有时可能只能产生期望的输出。此外,如果需要仔细设计和策划,提示也可能会向生成式人工智能模型引入偏见。总之,提示在生成式人工智能中的作用至关重要。它们使技术更易接近、相关和安全。然而,必须谨慎使用它们,并意识到它们的局限性和潜在偏见。随着生成式人工智能的不断发展和变得更加复杂,它将在塑造其发展和应用方面发挥关键作用。提示的一个关键好处是,它们为没有人工智能技术专业知识的人提供了一种使用生成模型创建内容的方式。任何人都可以通过提供简单的输入,如几个单词或一个句子,生成新内容,而不需要理解底层算法或编程。这使得生成式人工智能对更广泛的受众,包括艺术家、作家和营销人员,变得更加易于接触。提示的另一个好处是,它们允许生成式人工智能模型生成更符合特定上下文或应用的内容。例如,模型可以通过提供与特定主题相关的特定关键词或短语的提示,专注于开发相关内容。这在营销或广告中可能特别有用,生成式人工智能可以创建根据个人兴趣或偏好定制的个性化内容。提示还有助于减少生成式人工智能模型生成不当或有害内容的风险。相反,通过提供包含特定指导方针或标准的提示,模型可以被训练为创建符合这些指导方针的内容。例如,提示可以包含生成适合儿童的故事或避免生成歧视性或冒犯性内容的指示。然而,需要注意的是,提示并非生成式人工智能面临所有挑战的完美解决方案。它们有其局限性,有时可能只会产生期望的输出。例如,如果提示需要更具体或模糊,模型可能会生成与主题不相关或无用的内容。另一方面,如果提示需要更精确,可能会限制模型的创造力,并导致内容与现有内容过于相似。提示可能存在的另一个问题是,它们可能会向生成式人工智能模型引入偏见。如果提示没有经过仔细设计和策划,可能会反映出创建者的偏见或假设。这可能导致生成式人工智能模型持续或放大社会偏见。为了解决这个问题,必须设计没有偏见并反映多元化观点的提示。总之,虽然提示在生成式人工智能中至关重要,但它们并非万能解决方案。谨慎使用并意识到其局限性和潜在偏见至关重要。随着生成式人工智能的不断发展和变得更加复杂,它将继续是一个重要的研究和发展领域。需要仔细关注以确保其得到负责任和道德的使用。
参考文献和引用 Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., … & Bengio, Y. (2014). 生成对抗网络。在神经信息处理系统的进展中(第 2672-2680 页)。[链接:papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
]Radford, A., Metz, L., & Chintala, S. (2016). 深度卷积生成对抗网络的无监督表示学习。arXiv 预印本 arXiv:1511.06434。[链接:arxiv.org/abs/1511.06434
]Brock, A., Donahue, J., & Simonyan, K. (2018). 大规模 GAN 训练用于高保真度原始图像合成。在国际学习表示会议(ICLR)中。[链接:openreview.net/pdf?id=B1xsqj09Fm
]Karras, T., Laine, S., & Aila, T. (2018). 用于生成对抗网络的基于样式的生成器架构。在 IEEE 计算机视觉与模式识别会议论文集中(第 4401-4410 页)。[链接:openaccess.thecvf.com/content_cvpr_2018/papers/Karras_A_Style-Based_Generator_CVPR_2018_paper.pdf
]Huang, X., Li, Y., Poursaeed, O., Hopcroft, J., & Belongie, S. (2018). 堆叠生成对抗网络。在 IEEE 计算机视觉与模式识别会议论文集中(第 1866-1875 页)。[链接:openaccess.thecvf.com/content_cvpr_2017/papers/Huang_Stacked_Generative_Adversarial_CVPR_2017_paper.pdf
]Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., & Hovy, E. (2017). 使用扩张卷积改进文本建模的变分自动编码器。在第 31 届国际神经信息处理系统大会上(第 2136-2146 页)。[链接:papers.nips.cc/paper/6706-improved-variational-autoencoders-for-text-modeling-using-dilated-convolutions.pdf
]Salimans, T., Karpathy, A., & Chen, X. (2017). PixelCNN++:通过离散化逻辑混合似然和其他修改改进 PixelCNN。arXiv 预印本 arXiv:1701.05517。[链接:arxiv.org/abs/1701.05517
]Brock, A., Lim, T., Ritchie, J. M., & Weston, N. (2019). 具有内省对抗网络的神经照片编辑。在 IEEE 计算机视觉与模式识别会议论文集中(第 6199-6208 页)。[链接:openaccess.thecvf.com/content_CVPR_2019/papers/Brock_Neural_Photo_Editing_With_Introspective_Adversarial_Networks_CVPR_2019_paper.pdf
]Liu, H., & Ma, L. (2020). 生成对抗网络综述:算法、理论和应用。IEEE Access, 8, 29529-295Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., … & Amodei, D. (2020). 语言模型是少样本学习者。arXiv 预印本 arXiv:2005.14165。[链接:arxiv.org/abs/2005.14165
]Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). 语言模型是无监督多任务学习者。OpenAI 博客, 1(8), 9。[链接:d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
]Gao, J., Wenzel, S., Lin, Y., Mansimov, E., Yu, L., & Bengio, Y. (2021). 用于从自然语言中合成程序的神经引导约束逻辑编程。在北美计算语言学协会 2021 年会议论文集中(第 1531-1541 页)。[链接:aclanthology.org/2021.naacl-main.123.pdf
]Dodge, J., & Gane, A. (2021). 微调预训练语言模型:权重初始化、数据顺序和早停止。在北美计算语言学协会 2021 年会议论文集中(第 3093-3103 页)。[链接:aclanthology.org/2021.naacl-main.290.pdf
]Keskar, N. S., McCann, B., Varshney, L. R., Liu, C., Fischer, I., & Bengio, Y. (2021). 深度学习中初始化和动量的重要性。在第 38 届国际机器学习大会(ICML)中(第 5202-5212 页)。[链接:proceedings.icml.cc/static/paper_files/icml/2021/5208-Paper.pdf
]Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., & Bowman, S. R. (2019). GLUE:自然语言理解的多任务基准和分析平台。在 2019 年经验方法自然语言处理会议和第 9 届国际自然语言处理联合会议(EMNLP-IJCNLP)中(第 3675-3685 页)。[链接:www.aclweb.org/anthology/D19-1231.pdf
]Lewis, M., Liu, Y. Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., … & Zettlemoyer, L. (2020). 预训练语言模型用于对话人工智能。arXiv 预印本 arXiv:2004.14294。[链接:arxiv.org/abs/2004.14294
Dodge, J., Gane, A., Zhang, X., Bordes, A., Chopra, S., & Miller, A. (2020). 从人类偏好微调语言模型。arXiv 预印本 arXiv:2004.14228。[链接:arxiv.org/abs/2004.14228
]Holtzman, A., Buys, J., Forbes, M., & Choi, Y. (2021). 神经文本退化的奇怪案例。arXiv 预印本 arXiv:2101.05961。[链接:arxiv.org/abs/2101.05961
]Li, J., Li, W., Li, S., & Liu, X. (2021). 生成对抗网络研究的局限性和机会综述。arXiv 预印本 arXiv:2103.01864。[链接:arxiv.org/abs/2103.01864
]Keshavarzi, M., & Hashemi, S. M. (2021). 自然语言生成的挑战和局限性综述。自然语言工程, 27(2), 211-251。[链接:www.cambridge.org/core/journals/natural-language-engineering/article/survey-of-the-challenges-and-limitations-of-natural-language-generation/7C26143B9B04DCAE2B67051F7D42435A
]Liu, C., McCann, B., Keskar, N. S., Xiong, C., & Socher, R. (2021). 无监督双语词典归纳的局限性。在北美计算语言学协会 2021 年会议论文集中(第 1929-1939 页)。[链接:aclanthology.org/2021.naacl-main.151.pdf
]Yang, Z., Dai, Z., Yang, Y., Carbonell, J. G., Salakhutdinov, R., & Le, Q. V. (2019). XLNet:用于语言理解的广义自回归预���练。在神经信息处理系统的进展中(第 5754-5764 页)。[链接:proceedings.neurips.cc/paper/2019/file/2e9cf1a55c6bb74b6f8e3a9abfeaf60c-Paper.pdf
]
生成式人工智能的工作原理人工智能研究最初专注于使用算法和神经网络来识别大数据集中的模式。这用于模式识别、分析、决策支持和异常检测。神经网络是人脑的数字表示,旨在模拟自然的思维系统。这样的网络具有输入和输出层的神经元,还有一个或多个称为隐藏层的层。输入和输出层生成人工智能简单来说,你为每个数据单元(例如,单词)激活一个输入神经元。因此,例如,将短语“炽热的太阳”输入神经网络将激活三个输入神经元:红色、炎热和星期日。然后,在输出层,你让它知道这三个输入意味着“炽热的太阳”。起初,这可能看起来很愚蠢和耗时,但在你使用“炽热的炽热的太阳”、“绿色的炽热的太阳”、“凉爽的绿色太阳”和“凉爽的黄色太阳”之后,它开始理解什么是炎热、深绿和寒冷。这是一个非常简化的解释。虽然神经网络是复杂的概念,但它们的研究已经成为探索人工智能和人类思维意识世界的奇妙旅程。此外,多年来,神经网络技术已经发展成为能够支持今天生成式人工智能应用的新系统和平台。以下是三种常用的神经网络:
-
生成对抗网络(GAN):这种神经网络使用两部分来生成输出。第一部分是生成器,产生意想不到的结果,而第二部分是鉴别器,评估工作以查看其真实性。GAN 使用无监督学习系统,意味着鉴别器部分教导生成器。随着时间的推移,鉴别器在检测伪造品方面变得更加优秀,而生成器学会生成更好的输出以产生逼真的图片。
-
Transformer:这种神经网络将任何数据序列存储在另一个序列中,解码器随后可以使用它来再现原始数据序列。变压器最适合具有顺序数据的项目,例如自然语言句子和音乐。流行的基于 Transformer 的神经网络包括微软的 GPT-3、中国北京的不倒 2.0 和谷歌的 LaMDA。
-
变分自动编码器(VAE):第三种用于检测图像中噪音、绘制图像、减小尺寸以及分类和检测对象的神经网络类型。VAE 模型使用无监督学习方法,利用压缩算法和模式来缩小数据文件。
生成式人工智能的优势以下是生成式人工智能带来的优势:
-
更高质量的输出:生成式人工智能可以找到并去除图像和视频中的噪音,提高整体输出质量。
-
更便宜的过程:通过大幅减少制药和材料发现制造中所需的时间和成本,产品可以更便宜地制造。
-
提高生产力:帮助创意人士的生成式人工智能可以通过减少时间和精力来提高他们的生产力。
-
改善健康:在早期肿瘤检测中使用生成对抗网络(GANs)意味着更好的健康。
-
新发明:在合成新化学品、图案、物质或其他材料中使用神经网络可能会导致新的发明。
生成式人工智能的缺点也有一些问题,如创造力限制、设置成本和伦理考虑。仔细看:
- 有限的创造力:虽然生成式人工智能创造了新东西,但并没有涉及超越常规思维,因为产生的输出通常是输入到神经网络中的数据的组合。换句话说,人工智能系统需要更多的创造力。它们无法独立概念化或构思一个想法,因为它们依赖于人类输入来生成这些想法。然而,机器学习的模式识别能力和生成式人工智能的创造性方面类似于第六瑜伽人类能量系统中的脉轮功能。
只要机器保持这种状态,我们就安全,但是如果它们利用最后的第七脉轮来理解和概念化信息的能力呢?这些特质使我们与其他动物不同;人类可能面临灭绝。
-
高昂的设置成本:目前,人工智能系统的初始设置可能会很高,尽管预计未来会降低。
-
道德和伦理考虑:从深度伪造到描绘政治家和名人说有关争议应用程序的有趣或奇怪的事情,比如引发女权主义反弹的无底线裸露,使用生成式人工智能的负面结果是无限的。
流行的生成式人工智能应用生成式人工智能技术可以应用于许多需要人类创造力的领域。以下是其最受欢迎的应用和行业。
-
图像:生成新的人工智能艺术,使用文本到图像创作系统或自动编辑图像,比如添加面部特征、眼镜等。这个不受欢迎的深度裸体应用甚至可以自动脱掉人们的衣服。
-
视频:生成式人工智能也被用于视频创作,比如将人们的照片转换成带有声音的视频,蒙娜丽莎的微笑,以及看起来和听起来像真人的数字化化身。
-
文本:这包括使用自然语言处理(NLP)的书面文本和计算机代码。这个领域非常广泛,从聊天机器人到语法检查器,再到为文案撰写人员和编码人员提供写作助手。
-
好莱坞电影:除了简单地创作视频,生成式人工智能还可以应用于更有创意的情况,比如使用深度伪造技术开发完全不同的演员面孔,改变他们的年龄,特殊角色(如漫威的灭霸),甚至由人工智能生成的故事和剧本。
-
音乐:生成式人工智能将颠覆音乐行业,从播放神经网络到更复杂的系统,可以半辅助或完全自动地创作各种类型的音乐。
-
医疗:各种应用,包括增强身体扫描以提供更好的诊断信息。
-
时尚:生成式人工智能同样有望颠覆时尚行业,从不同风格到个性化定制服装、颜色、趋势预测和纹理。
-
电子商务个性化:用于预测客户偏好甚至提供主动解决方案、体验、定向沟通、个性化产品推荐等技术。
-
数据增强:从现有但有限的数据中创建新的数据点,以增加可用信息。
-
制造业:生成式人工智能可以帮助合成新材料、化学品和药物,降低生产成本。
生成式人工智能项目哲学通过实践学习通常是最有效的方法。因此,如果你对生成式人工智能及其应用感兴趣,那么没有比通过一个测试项目更好的开始方式了。以下是一些启动点子:
-
生成不存在的面孔。
-
面部老化或操纵应用程序。
-
从图像中创建新的人体姿势。
-
生成更高的图像分辨率。
-
为黑白图像上色。
-
从 3D 图像创建 2D 对象。
-
创建卡通角色。
-
从图像中去除噪音。
-
自然语言处理意图分类聊天系统。
-
对广泛文章进行摘要。
-
文本转图像艺术创作。
-
CT 扫描检测以改善癌症诊断。
顶级生成式人工智能工具许多个人和组织开发了各种工具,可以在某种程度上帮助您进行生成式人工智能项目。以下是其中一些最受欢迎的工具:
-
OpenAI - 自然语言处理 GPT-3 和自然语言转代码 Codex 模型。
-
GAN Lab - 浏览器中的生成对抗网络。
-
Nightclub - AI 艺术生成器。
-
TorchGAN - 使用 Pytorch 的 GAN 训练框架。
-
Pigan - 一个实现 GANs 的 Python 库。
-
Generate Generative Networks - 用于 GANs 的轻量级 TensorFlow 工具。
-
Google Cloud AI - 来自 Google 的一系列人工智能工具。
-
AI Duet - 这让您可以与计算机一起演奏钢琴二重奏。
-
Art Breeder - 重新混合图像以创建独特的艺术作品。
-
Code T5 - 基于 Transformer 模型理解和生成代码。
-
Mimic AI - 复制和模仿任何人的声音。
-
GAN Toolkit - 无代码 GAN 模型的框架。
-
HyperGAN - 具有 UI 和 API 的可组合 Python 框架。
-
Deep dream - 计算机视觉程序。
-
Imagery – Nvidia 深度成像 PyTorch 库。
-
Cartoonize - 创建卡通人物。
-
Tensorflow - 流行的机器学习平台。
-
Scikit-learn - 另一个 Python 中的机器学习平台。
-
Give Her - 令人印象深刻的文本到图像创作者。
创业公司使用生成式 AI 有几家专注于利用生成式 AI 的某一方面或另一方面来解决问题的初创公司。以下是一些例子:
-
Rewrite.ai - 大规模超个性化营销视频。
-
Deep Stories - AI 故事和剧本生成器。
-
Musician - 生成 AI 音乐。
-
Synthesia - 从文本生成视频。
-
Jukebox - 使用自动编码器生成 AI 音乐。
-
身份验证证明 - 从照片创建 AI 视频。
-
Genie AI - 法律模板和 AI 律师。
-
Primarily AI - 用于人工智能开发的合成数据生成器。
公司中生成式 AI 的用途最后,尽管它看起来像是一种娱乐工具,但它也为公司提供了多种机会。例如,可以在几秒钟内生成可信的文字,甚至可以根据反馈进行调整,这是一个方便的选择。因此,这一功能可以使许多行业受益,从可以利用为社交媒体或营销活动生成的即时代码的 IT 组织到需要生成书面材料的任何组织。简而言之,任何需要制作书面材料的组织都会在生成式 AI 中找到支持。此外,它还可以用于创建专业材料,例如医学图像的高分辨率版本。如果您想了解生成式 AI 以及如何将其应用于日常生活,请报名参加内容创作者的免费 MOOC 课程,这是一个为期两周的在线研讨会,将于 2 月 23 日开始。预订您的位置!最后,如果您已经具有最基本的知识并希望成为专业人士,我鼓励您了解工业 4.0 硕士课程。了解如何利用人工智能、区块链、机器人技术、RPA 和精益方法论来改进流程。然后,我们将等待您的加入!