原文:Data Science: Create Teams That Ask the Right Questions and Deliver Real Value
十六、令人鼓舞的问题
在这一章中,你将学习各种鼓励提问的方法。您将了解如何召开问题会议。接下来,您将探索不同类型的问题,以及如何使用问题板和问题树有效地显示和组织这些问题。最后,你将学习如何发现新问题,我们将在第十七章中详细介绍。
运行问题会议
提问和学习是数据科学和团队只看数据的关键区别。请记住,数据科学是关于使用科学方法来获得洞察力。提出好的问题是这种科学方法的核心。
正如我们在本书中所讨论的,组织通常将问题视为一种判断,而不是一种学习的方式。作为数据科学团队的领导者,你需要确保你的团队提出好的问题。你要做到这一点,最好的方法之一就是建立一个良好的交流思想的环境。
研究负责人是提问负责人,他确保团队提出好的问题。研究负责人也应该关注学习而不是判断。团队中的每个人都应该努力做到深度倾听,这是一种更专注的方式来倾听对方的想法,并且能够在不感到被评判的情况下反击这些想法。
建立这种环境的一个好方法是召开问题会议。在这些会议上,鼓励与会者在发言前提问。这有时被称为问题优先的方法。这些会议是关于创造最大数量的问题。他们专注于每个人的提问和倾听。如果你是研究负责人,不要让任何人带着智能手机或笔记本电脑。你希望每个人都专注于倾听。
我曾经为一个刚开始研究数据科学的组织工作过。该团队正在开会预测将有多少人参与医学研究。数据分析师展示了他们过去研究的图表,并表示他可以创建一个数据模型来预测谁可能会参与。有一段短暂的沉默,然后会议结束了。一个星期后,团队又聚在了一起。数据分析师提交了一份显示历史数据的报告,这些数据表明每个研究可能都有一定数量的参与者。
现在,想象一下,如果这个会议集中在好的问题上。如果你是研究负责人,你可以这样开始会议:“每个人都知道我们为什么要开这个会吗?”然后等待回应。一个好的问题领导者不害怕短暂的沉默。不要试图回答自己的问题。给房间里的每个人时间思考他们的答案。
一旦你对每个人都理解了会议内容感到满意,就提出挑战。你可以用这样的话来总结挑战,作为会议的开场白,“我们浪费了很多钱,因为我们不知道谁会参加我们的医学研究。”将解决方案留给团队的其他成员。你也可以用一些非常开放的话题作为开场白,比如“我们需要更好地预测谁会出现。”坐下来,等着看是否有人开始提问。如果几分钟后,没有人说什么,你可以问这样的问题,“每个人都明白为什么这是一个挑战吗?”
你希望从团队中得到的是类似这样的问题,“有些研究比其他研究填充得多吗?”这些类型的问题允许您的数据分析师为报告提供更完整、更有趣的数据。
你要避免的是会终止对话的快速陈述,例如,“我们应该做研究,看看我们的竞争对手是如何填满他们的医学研究的。”这使得人们无法想出他们最好的主意。请记住,讨论给你的团队带来了最大的价值。您希望团队在探索数据时感到舒适。
如果你是研究负责人,如果团队很难提出好的问题,不要太沮丧。大多数组织仍然觉得最好是一群知道事情的人(或者至少说得好像他们知道)。他们喜欢说话清晰的团队。这种清晰仍被视为比不知道更有价值。可能要开几次会,人们才会愿意问好问题。在你开了几次问题会议后,你可能会发现,一群提出尖锐问题的人通常会获得更深刻的见解。
识别问题类型
如果你开了一个有效的问题会议,你可能会得到很多好问题。太好了。请记住,您希望您的团队在找到几个想要进一步探索的问题之前淘金并通过几十个问题。就像早期淘金的矿工一样,你希望能够从沙子中挑出金子。你会想知道如何把好问题从那些你可以留下的问题中分离出来。
一个好的方法是考虑不同的问题类型。每种类型都有自己的优势和挑战。如果你是研究负责人,你可以帮助团队确定哪种问题类型会带来最有趣的见解。两种最常见的问题类型是开放式和封闭式。这些问题中的每一个都可以是一个基本的或非基本的问题。有些问题类型比其他类型更容易区分。
你能识别的第一种类型是开放性问题。开放性问题没有固定答案。想想跑鞋网站。您的数据科学团队可以提出一个开放式问题,例如,“谁是我们的理想客户?”一个开放的问题通常需要更多的讨论。这些都是你试图认同对方推理的问题。例如,团队中的某个人可能会说,理想的客户是购买大量跑鞋的人。团队中的另一个人可能会质疑这种推理,认为理想的客户是鼓励其他人购买跑鞋的人,或者是博客写手,或者是创办了跑步俱乐部的跑步者。
一个开放性的问题通常没有答案。相反有人认为。谁的推理最好,谁就能解决问题。您的数据科学团队将希望寻找谁是理想客户的最有力论据,然后数据分析师将尝试用数据来支持这一论据。
封闭式问题通常更具决定性。一个封闭的问题可能是这样的,“我们的跑步者的平均年龄是多少?”这类问题通常会有一些讨论。你的团队可能要考虑平均年龄相对于平均年龄的优势。他们也可能想质疑信息的价值。从这个问题中你还能得到什么问题?
如果你是研究负责人,确保团队没有问太多任何一类问题。问太多开放式问题,会让大家花太多时间提问,没有足够时间整理数据。太多的封闭式问题会导致团队花太多时间问小的、更容易证明的问题,而没有着眼于全局。
一旦你确定了你的问题是开放式的还是封闭式的,你就会想弄清楚你的问题是否重要。一个基本问题旨在激发团队进行深入讨论。这些问题在大多数组织中通常很难问。它们可以是简单的问题,比如“为什么人们从我们这里买跑鞋?”它们也可以更复杂,比如,“人们为什么要跑?”
基本问题通常是开放的,必须进行辩论。不应该有一个正确的答案。也可以有一个封闭的本质问题。团队可能会问这样的问题,“我们是否应该停止印刷目录,只通过网站销售鞋子?”封闭的本质问题很少。
正如你可能已经猜到的,还有许多不同类型的无关紧要的问题。一个无关紧要的问题并不是一件坏事。在你开始问一些重要的问题之前,你可能要经历许多不重要的问题。一个好的策略是问许多封闭的、不重要的问题,作为一种建立想法和问更大的重要问题的方法。
假设你想问人为什么要跑。你的科学团队可能想在第一个冲刺阶段解决一些不重要的问题。我们的顾客属于跑步俱乐部吗?我们的大多数客户是长期跑步者还是刚刚开始跑步?他们家还有其他人跑步吗?这些问题可能有助于你为你的顾客为什么喜欢跑步建立一个案例。如果你的团队对人们为什么喜欢跑步有充分的理由,这将有助于你推销你的产品来满足这些需求。
如果你是团队的研究负责人,请留意这些不同的问题类型。他们会帮助你引导讨论,整理出你最有价值的问题。如果你知道不同的类型,你更有可能找到能让你获得最佳洞察力的黄金。
组织你的问题
如果你是侦探剧的粉丝,你可能看过犯罪墙,当侦探试图找出一个未解之谜的所有不同部分时使用。他或她把图片和笔记贴在墙上,试图把不同的部分联系起来。板子变成了一个视觉故事。这就是为什么你会经常看到侦探坐在地板上盯着黑板,试图从数据中的所有小谜团中拼凑出故事。
您的数据科学团队将面临类似的挑战。他们会试着讲一个故事,但他们只有拼图的一部分。您的团队可以使用相同的技术创建一个问题板—一个他们可以看到所有问题和数据的地方。这样他们可以讲述一个更大的故事。
正如在第十三章中提到的,创建一个问题板是展示想法并向你的团队和组织中的其他人征求问题的好方法。在黑板的最上面,你应该放一个简单的标识符,比如“问题板”或者“问一个问题”问题板是一种在一个地方交流和组织他们的清晰方式。
你的数据科学团队应该有几十甚至几百个不同的问题。问题板很可能是团队的一个关键会议点,也是团队成员和风险承担者讨论项目的一个好地方。
首先,将你的问题板放在团队成员的桌子旁边或走廊上。开放空间不适合做问题板。你会希望人们站在黑板旁边读问题。另一个建议是把广告牌放在人流量大的地方。理想的地方是靠近饮水机、小吃店或浴室。它应该是一个几个团队成员可以见面并且不会分散其他人注意力的地方。
通常,整理你的白板的最好方法是使用不同颜色的便利贴。你需要从上到下组织你的董事会。黑板上方的便笺包含了你的基本问题。对于这些问题,使用红色或粉红色的便利贴。在它们下面,你可以用黄色便利贴来写不重要的问题。请记住,这些问题是针对小问题的。它们通常是有正确答案的封闭式问题。最后,你可以使用白色或紫色的便利贴。这些是研究小组发现的可能有助于解决问题的小数据点。
拥有问题板有五大好处:
- 它为团队提供了一个共享空间,有助于他们的小组讨论。
- 它显示了问题是如何相互联系的。
- 它帮助你按类型组织你的问题。
- 它帮助你讲述一个故事。问题板显示了团队可能难以解决的更大的问题。
- 它给组织中的其他人一个参与的地方。你希望团队之外的人添加他们自己的问题,并看到你的进步。
请记住,您希望您的团队进行深入的讨论。每个人都应该能够质疑对方的推理。团队应该倾听彼此的问题,并尝试提出自己的问题。他们应该专注于学习,而不是判断他们问题的质量。
问题板有助于这一点,因为它为人们提供了一个集中讨论的地方。这也有助于团队站起来,亲自参与并提出新的想法。
你的许多问题将是相互关联的。通常,你会有一些重要的问题与几个封闭的、不重要的问题联系在一起。如果是在墙上,可以用细绳展示这些联系。如果是在白板上,你可以画不同颜色的线。这将有助于你的团队保持有组织性,甚至优先考虑他们最有价值的问题。
如第十三章所述,问题板将邀请团队以外的其他人参与。你可能想在黑板旁边放一叠绿色的便利贴。留下标记和小纸条,邀请其他人添加他们自己的问题。有时候这些来自团队之外的问题讲述了最有趣的故事。
创建问题树
您的问题板将是传达您的数据科学故事的关键部分。它应该包括你的团队正在努力解决的问题。它也可能有一些数据提示一些答案。一个好的问题板鼓励组织的其他成员参与进来,并吸引人们成为你分享故事的一部分。
问题板的挑战之一是保持它的良好组织。因为它是为小组讨论而设计的,所以您希望每个人都能够共享相同的信息。它不应该有几组不同的一个人的笔记。如果每个小组只有一个人的想法,那么这个人将是唯一理解其含义的人。
相反,你所有的问题都应该用同一个系统来组织。最好的方法之一是创建问题树。问题树是一组与一个基本问题相关的便笺。你会想用最引人注目的颜色来回答基本问题。通常这不是红色就是粉色。
让我们为跑鞋网站设想一个问题板。你的团队提出的一个问题是,“我们的网站能帮助鼓励不跑步的人成为跑步者吗?”如果你是团队的研究负责人,你应该把这个重要的问题写在黑板最上方的红色贴纸上。
在这个基本问题下面,你可以开始添加其他问题。这可能是另一个基本问题,比如“是什么让人们跑步?”也可以是一个无关紧要的问题,比如“非跑步者会在我们的网站上购物吗?”由于这是一个封闭问题,您可以在黄色问题“粘滞”旁边放一点“粘滞数据”。也许类似于,“数据显示,我们 65%的客户在一周内都没有跑步。”你可以使用如图 16-1 所示的饼状图来说明这一点。
图 16-1。
Pie chart that shows how many times per week respondents run
假设生成的数据来自该公司对其客户进行的调查。问题是,“你平均每周跑步几次?”当你看数据时,你会发现大约 65%的受访者根本不跑步。55%的受访者每周跑步一次或多次。参见如何在 http://ds.tips/S3eve
创建此图表。
查看问题树的人应该能够跟踪团队的思维过程。她应该看到下面的问题以一个开放式的基本问题开始(“我们的网站能帮助鼓励不跑步的人成为跑步者吗?”)并查看解决该问题的团队。她应该能一路追踪到不同的分支。
假设这个问题,“是什么让人们跑步?”向自己的方向分叉。在这个问题的下面是另一个问题,“他们跑步是为了减压吗?”下面是另一个问题,“压力大的不跑步的人能看到跑步的好处吗?”
有了问题树,研究主管现在就有了一份报告,向组织的其他人展示进展情况。她可以展示数据科学团队正在同时处理几个高价值的问题。不难看出,深入了解如何创造客户可能会增加收入。
问题树帮助研究主管将团队的工作与真正的商业价值联系起来。一个问题板应该有几个问题树。在黑板的最顶端,应该有几个红色或粉红色的基本问题。这些问题中的每一个都应该像一棵倒挂的树一样分支到其他几个问题中。如前所述,确保使用不同颜色的便笺条(重要问题用红色或粉色,不重要问题用黄色)。有时,开放式问题会分支成不同的问题树,您应该用显示数据的小便笺来结束封闭式问题。
和任何一棵树一样,你会想要修剪你的问题。这是研究主管的主要职责之一。她需要确保你的问题能带来真正的商业价值。如果她认为你的问题不会带来真知灼见,她可能想把它们从问题板上拿下来,这样数据分析师就不会开始搜索结果了。
Note
作为团队问题会议的一部分,研究负责人通常会删除问题。您不希望您的研究主管在没有与团队沟通变更的情况下,就将问题从白板上拿下来。
关于问题树的一个关键点是,它们实际上反映了大多数团队如何提出新问题。请记住,数据科学是使用科学的方法来探索您的数据,这意味着您的大部分数据科学将是经验性的。你的团队会问一些问题,收集数据,并通过问一系列问题对数据做出反应。当你使用问题树时,它反映了团队学到了什么。同时,它向组织的其他人展示你的进步。
发现新问题
有两种方法可以帮助你的团队找到更好的问题。其中之一是你组织中的某人在你的问题板上张贴了好问题。这些是你的“礼物问题”另一种方法是在与您的数据科学团队的定期会议中提出好的问题。
张贴在你的布告栏上的礼物问题很大程度上取决于你的组织。一些组织更具协作性。其他人更受控制。如果你的组织更加开放,你可能会被问题淹没,不得不优先考虑讨论。如果组织更谨慎,你可能几个星期看不到任何输入。
不管是哪种情况,填写问题板的最好方法就是让它看起来有吸引力。一个好方法是创建一个简单的询问问题的标志,例如“请向我们的数据科学团队提出任何问题。”另一种方法是将问题板整合到有趣的演示文稿中。
假设有人提出了这样一个问题,“怎样才能做出一双完美的跑鞋?”这是一个开放式的基本问题。如果你是研究负责人,你可以把这个问题复制到一个红色的便利贴上,然后把它放在你的问题树的顶端。在下一次演示中,请团队回答一些有趣的礼物问题,并讲述一个关于数据暗示的故事。他们想讲述一个关于完美跑鞋的故事。他们可能会谈论颜色、质量和风格的组合,并用简单的数据可视化来备份数据。接下来,让公司的其他人知道这个好故事是从哪里来的:张贴在公告板上的一个有趣的礼物问题。这种认可鼓励其他人参与。组织中的大多数人总是在寻找更好的参与方式。如果你能证明他们的问题很重要,你就能更容易地填满你的白板。
来自团队外部的问题是获得洞察力的好方法。这些问题通常简单明了,这通常使它们很难讨论。这些简单的问题往往最能质疑我们的假设。这就是为什么这些礼物问题可以让你的团队专注于商业价值。
可惜你的问题大多不是礼物。相反,它们是与您的数据科学团队的其他成员进行艰难讨论的结果。这些都是来之不易,难以创造的问题。
如果你是团队的研究负责人,尽你所能利用你的礼物问题。此外,与团队的其他成员一起努力工作,找出你将在第十七章中看到的六个关键领域中的问题。您的问题越多,您的团队就越有可能找到关键的见解,并将其与真正的商业价值联系起来。
摘要
在本章中,您学习了各种鼓励提问的方法以及如何召开问题会议。接下来,您了解了不同类型的问题,以及如何使用问题板和问题树有效地显示和组织这些问题。最后,你简要学习了如何发现新问题,这将在第十七章中详细介绍。
十七、寻找问题的地方
让团队提出好的问题通常不像创造合适的环境那么简单。即使是技术高超的数据科学团队也常常需要更多的指导。当您与您的团队会面时,您会希望将问题集中在六个关键领域。这些领域不是你能找到好问题的唯一地方,但它们通常是一个好的起点。这些问题是:
- 澄清关键术语
- 根除假设
- 查找错误
- 查看其他原因
- 揭露误导性的统计数据
- 突出显示缺少的数据
这六个领域都有自己的提问风格。当你问一些根除假设的问题时,它们与关于误导性统计的问题有很大不同。这些领域中的每一个都让团队走上了不同的道路,每一个都将在接下来的章节中详细讨论。
这六个方面旨在作为指南。不是所有的问题都会涵盖这六个方面。相反,你应该这样想:如果你讨论这六个方面,你肯定会提出至少几个问题。这些问题将成为推动您的数据科学团队的动力。在每个冲刺阶段,你的团队将努力解决或重新排列你的问题板上的问题。
澄清关键术语
乔治·卡林曾开玩笑说,他把一美元放进找零机,结果什么也没变。这让你想知道他希望什么样的改变。你永远不会知道,因为他用的词有几种不同的意思。不幸的是,英语中的许多单词都是如此。我们使用单词的上下文对它们的意思有很大的影响。这就是为什么查看关键词和短语是收集有趣问题的最佳方式之一。
数据科学讨论应该运用批判性思维。你需要仔细看对方的推理,然后质疑对方的推理,这样你才能更好的理解大家的想法。最好的方法之一是质疑关键术语和短语。
所以让我们回到跑鞋网站。假设数据科学团队中有人提出了一个有趣的问题:“人们经常跑步是因为这会让他们更快乐吗?”这是一个开放式的基本问题,这意味着可能不会有是或否的答案。相反,该团队将不得不提出有数据支持的有力论据。
数据科学团队应该质疑哪些关键术语和短语?想想那些可能有歧义或多重含义的词。这些词通常是抽象的,可以有多种解释。在这种情况下,有几个词你可能想探究一下:“经常”和“更快乐”
想想“经常”这个词。这个词对你来说意味着什么?意思通常取决于人。例如,我的妻子喜欢去餐馆。我们尽量每周至少去一次。如果你问我,我会说我们经常去餐馆。如果你问她,她会说我们从不去餐馆。
您的数据科学团队应该提问,以澄清“经常”一词的含义你可能想问一个封闭的问题,比如“我们的普通顾客每周跑几次?”然后把这个问题放在你的问题树上的前一个问题下面。
你也应该探索“更快乐”这个词。“更快乐”这个词对你来说意味着什么?你的顾客跑步是因为他们喜欢跑步吗?也许他们真的喜欢跑步,当他们跑步回家时,他们最开心。也许他们不喜欢跑步,但这是他们知道的唯一缓解压力的方法。从某种意义上说,他们更乐于跑步。
这是你可以进一步提问的另一个领域。你可以问一个宽泛的基本问题,比如“什么能让我们的客户快乐?”你也可以试着把快乐分成几部分。也许可以问这样一个问题,“我们的客户跑步是因为他们觉得他们必须跑步吗?”你甚至可以更具体地问:“我们的顾客在跑完步后最开心吗?”
现在你看到了询问关键短语和单词是如何快速产生更多问题的。请记住,在你的团队参加问题会议时,寻找答案是研究负责人的工作。仅仅因为你的数据科学团队问了这些问题,并不意味着他们有义务坚持到底。研究负责人是倾听这些问题并挑选出听起来最有趣的金块的人。
带着这个问题(人们经常跑步是因为跑步让他们更快乐吗?),你现在有五六个其他可能更有趣的问题。您的团队正在询问可能与业务价值相关的基本开放式问题。
想想这个基本的、开放式的问题,“什么让我们的客户快乐?”这个问题可能看起来很简单,几乎微不足道,但是如果您的数据科学团队能够获得一些洞察力,这将会带来真正的商业价值。见解是您的数据科学团队将提供的金块。然而,许多数据科学团队并不追求这样的问题,因为他们觉得这些“关键术语”是显而易见的。请记住,对您来说显而易见的事情可能对其他人来说并不明显,所以请花时间问这些问题,这样您就可以让您的数据科学团队更有效率和洞察力。
根除假设
找到好问题的另一个方法是寻找隐藏的假设。人们一直在做隐藏的假设。假设没有错。事实上,你需要他们富有成效。你认为你的同事工作出色。一般来说,人们会认为你说的是实话。你不想为了完成某件事而事后批评每件事。
你需要注意的是那些可能导致盲点的假设。这些假设让你无法探索有趣的问题,并导致你的团队参与集体思维。在您的数据科学团队中尤其如此,这就是为什么获得新问题的最佳方式之一是查看潜在的假设。
一般来说,假设有四个特征:
- 它们通常是隐藏的或未声明的。很少有人以这样的话开始句子:“如果我们假设这是真的……”
- 它们通常被认为是理所当然的,或者被视为“常识”
- 它们对于决定你的推理或结论是必不可少的。你的推理甚至可能依赖于假设。
- 它们可能具有欺骗性。通常,有缺陷的推理被常识性的假设所掩盖。比如,“糖对你不好,所以人工甜味剂肯定对你有好处。”
我曾经为一个组织工作,该组织检查了它的客户服务数据,并意识到它有很高比例的人打电话订购产品。数据科学团队的任务是试图改变这种行为,因为维护呼叫中心的成本很高。该公司希望鼓励客户使用网站或手机应用程序。
研究负责人以问一些有趣的问题开始。为什么有人打电话进来?我们能做些什么来使我们的网站更容易被客户使用?我们如何让更多的客户使用我们的移动应用?为什么顾客更喜欢和一个人说话?
其中一些问题有潜在的假设。研究负责人认为,人们打电话进来是因为他们不喜欢这个网站,而且客户没有安装移动应用程序。这个推理可能对,也可能不对。重要的是不要假设他们是对的。如果团队从表面上接受这种推理,他们可能会错过发现关键见解的机会。在这种情况下,大多数打电话进来的人都是在工作网站上工作的专业人士,他们无法使用智能手机或访问网络。
团队可能寻找假设的另一个领域是当他们试图预测未来行为时。假设我们的跑鞋网站想要使用预测分析来确定哪双鞋最成功。也许他们发现非常鲜艳的鞋子在过去做得很好。他们创建了一个模型,预测一双色彩鲜艳的鞋子会更成功,如图 17-1 所示。
图 17-1。
How customers decide which shoe to buy
您创建的调查包含以下变量:
1.一周跑几次?
2.鞋子有很酷的特点吗?
3.鞋子有很多颜色吗?
4.被告是否购买了鞋子?
第四个特征用作决策树预测的因变量。参见如何在 http://ds.tips/fuJE3
创建此图表。
解决这一假设的一个好方法是尝试首先确定推理。在这里,理由是彩色跑鞋在过去做得很好。一旦你有了这个推理,你就可以开始考虑假设了。
其中一个假设是,跑鞋之所以成功,是因为它色彩鲜艳。记住相关性并不一定意味着因果关系。可能高质量的厂商一直在努力让自己的鞋子颜色更鲜艳,也就是说跑者买的是高质量的鞋子,只是碰巧颜色鲜艳而已。这些假设中的一些可以通过几个小心的问题来强调。一些简单的问题,比如,“顾客买跑鞋是因为它们色彩鲜艳还是其他什么原因?”
重要的是要记住,假设没有好坏之分。搞清楚他们都是对是错,并不坏,甚至很关键。关键是要集中精力确定他们在哪里。一个被接受为事实的假设可能会引起连锁反应,导致错误的推理。还要记住,假设并不总是需要纠正的错误。这更像是一条探索之路。
假设面临的主要挑战是,如果你不把它们公之于众,它们就会堆积起来。在你意识到这一点之前,你的团队可能已经在研究一堆薄弱的假设了。当这种情况发生时,很难有有趣的发现。
查找错误
数据中的错误不一定会引起最大的麻烦。在数据科学团队中,更大的问题是团队推理中的错误。数据中的一个错误可能是一个挫折或产生一系列虚假报告。另一方面,推理中的错误可能会将团队引向完全不同的方向。整个团队可能会花几周甚至几个月的时间在错误的地方寻找,让团队问不出有趣的问题。
你已经看到了收集好问题就像淘金一样。在进入有趣的话题之前,你可以先思考几个糟糕的问题。你可能需要澄清一些关键的短语和语言。还有一些假设可能把不正确的推理粘在看似正确的结论上。一旦你剥开这些假设,理清语言,你就只剩下简单的推理了。从很多方面来说,你在问一个更难的问题,“这个推理正确吗?”
总的来说,当你质疑别人的推理时,有七种危险你要小心:
- 人身攻击:在你的数据科学团队中,如果有人说“你不理解数据”,你可能会看到这种情况这可能是真的,但这不是一个建设性的方式来驳回别人的问题。
- 问题驳回:你不想驳回一个有趣的问题,因为它可能会导致不舒服的问题。您不希望您的数据科学团队说类似“问这个问题的组织政治是什么?”
- 快速共识:这有时被称为广告大众推理。它与群体思维密切相关,并基于一个有缺陷的推理,即如果每个人都很快同意,他们就一定是对的。
- 依赖可疑权威的推理:你有时会在经典案例中看到这种情况,“我在互联网上看到了这个图表,所以它肯定是正确的。”
- 循环的,或巧妙的推理:有时你会在数据科学团队中看到这种情况。你会听到这样的话,“我们是一家数据驱动的公司,所以我们的数据必须是正确的。”
- 稻草人推理:这是指你故意歪曲别人的理由,以此来让自己的理由看起来正确。你经常可以识别这一点,因为有人会叫出某人的名字。类似这样的话,“如果你接受了比尔关于数据很糟糕的说法,我们就得从头开始。”
- 错误的二分法:这有时会对好问题产生寒蝉效应。它基于只有两种可能结果的想法。你可能会听到这样的话,“如果数据是正确的,那就意味着我们都错了。”
将这七种危险视为保持你的问题会议富有成效的指南。这些都可能导致你的团队出现软推理和浅问题。
我曾经与一个数据科学团队合作开发一个州教育部测试应用程序。他们想看看是否可以使用预测分析来确定哪些学生可能需要额外的帮助。该团队有万亿字节的测试信息,但他们很难创建一个工作模型。
在提问会上,一名团队成员问道:“这些测试在评估学生的知识方面做得好吗?”另一个人回答说,“这些是国家标准,我们不是教育者,所以我们应该接受这些数据是正确的。此外,如果它不正确,你就不能使用任何数据。”
这些声明很快结束了讨论。如果团队探索了这些问题,情况会好得多。相反,他们依赖于危险的推理。国家标准可能来自可疑的权威。这种针对个人的攻击假设房间里没有人知道足够的信息来提问。最后,有一个错误的二分法,即数据要么全是好的,要么全是坏的。
在你的团队的问题会议上要小心这些危险。拥有所有的答案并不重要。重要的是识别软推理。你不希望软推理代替有趣的问题。
质疑证据
正如我们在本书中提到的,找到有趣问题的最好方法之一是寻找假设。我们也研究了错误推理的危险。当你在寻找好问题时,推理中的错误会产生寒蝉效应。一旦发现推理中的错误,您的数据科学团队就可以考虑对可能被认为理所当然的事实提出关键问题。
许多组织依赖广为接受的事实作为日常工作的一部分。当您与您的数据科学团队合作时,这些事实将成为背景。关键是在问有趣的问题时,要确保事实不是禁区。事实上,您的数据科学团队可能是组织中唯一对质疑既定事实感兴趣的团队之一。
当你在数据科学团队时,每次遇到事实,你应该从三个问题开始:
- 我们应该相信吗?
- 有证据支持吗?证据是公认的数据,可以用来证明一些更大的事实。如果有证据,你应该问第三个问题。
- 证据有多充分,是否支持事实?
你不应该认为证据是证明或否定事实。相反,试着把它想成是有力或无力的证据。有强有力的证据表明吃太多的糖对你的健康有害。没有足够的证据表明蜂蜜比糖更健康。当你看证据时,你所做的只是决定你是否可以依赖事实。在这种特殊情况下,你可能要减少糖的摄入量。你不想用蜂蜜代替你的糖罐。
当你在数据科学团队工作时,你会看到各种公认的事实。他们中的每一个都可能有不同的证据来源,这都能引出有趣的问题。一些最常见的证据是直觉、个人经历、例子、专家意见、类比甚至研究。
当你看到一个有证据支持的事实时,不要试图把它看作一个停止信号。相反,把事实看做一个可能有一段时间没有被探索过的布满灰尘的走廊。可能会有新的东西来支持你的既定事实。你也可能会发现根本没有证据,事实只是一个未经验证的假设。
我曾经在一家公司工作,该公司有一个数据科学团队在处理一组信用卡交易。该公司的人员将信用卡数据视为向银行客户提供促销的一种方式。他们对顾客的信用卡购买了解得越多,他们就越有针对性地进行促销。
数据科学团队与业务部门的某人合作,试图改进该模型。该团队开始对某个品牌的信用卡进行新的促销活动。业务部门的利益相关者说,他们不应该使用那种特定类型的信用卡来进行实验,因为使用那种信用卡的大多数客户只在大额购买时使用它。数据科学团队问这个人是怎么知道这个事实的。利益相关者说她已经“这样做了很多年”,这是她的直觉。
会后,数据科学团队决定测试经理的直觉。他们在问题板上创造了新的问题。其中一个问题是,“顾客只在大额购物时使用这种信用卡吗?”事实证明,经理是对的。有非常有力的证据表明,该品牌的信用卡主要用于大额购买,如图 17-2 所示。数据科学团队以更有力的证据支持了经理的直觉,并以交易历史和购买价格为依据。
图 17-2。
Total spend by payment meathod
如果您查看每个交易值时段的计数,随着总金额变高,更多的交易是通过信用卡支付的;第二类是现金。参见如何在 http://ds.tips/br5wR
创建此图表。
当你参加问题会议时,你也想评估来自其他团队成员的证据。直觉没有错。通常,直觉可能是伟大发现的开始。然而,并不是团队中的每个人都有相同的直觉。对于每个团队成员在数据中看到的内容,可能会有一些分歧。当这种情况发生时,一起努力看看彼此的证据。询问为什么一个人的直觉可能比另一个人的更准确。也许他们有更多的经验,或者在过去从事过类似的项目。
请记住,事实并不总是刻在大理石上的。事实会随着证据变强或变弱而改变。当你在数据科学团队工作时,不要害怕质疑证据。通常,它会成为新见解的来源。
看到对立的原因
很容易说相关性并不意味着因果关系。在实践中并不总是容易看到。通常,你会看到因果关系,没有理由去质疑它们之间的联系。有时很难看出事情发生后的结果和因为事情而发生的结果是不同的。你会在工作和生活中看到这一点。
我和妻子决定,我们不想为我们的房子买一台游戏机。相反,我们和儿子达成了妥协。我们让祖父母在他们的房子里有一个视频控制台。这样,每次我们去看他的时候,我们的儿子都可以看到爷爷奶奶,玩他的新游戏。每次我们去看他,我们都会给儿子买一个新游戏。它会在我们离开前寄到。我们的儿子相信我们买了一个新游戏,然后马上飞到奶奶家让他玩。这是非常清楚的因果关系。
视频游戏的出现实际上是一个对立的原因。比赛到了,我们收拾行李。不过,这不是真正的原因。真正的原因是我们有去看奶奶的票,所以我们买了一个新游戏。
这些对立的原因并不总是容易被发现。有三样东西需要寻找:
- 原因是否真的有意义:有许多对立的原因。进口柠檬和交通事故的减少是有联系的。冰淇淋和鲨鱼袭击之间也有联系。尽管如此,这些联系没有任何意义。柠檬不会让人成为更好的司机,鲨鱼也不吃冰淇淋。你的大部分竞争原因不会那么明显。一定要检查因果关系的证据。
- 原因是否与其他影响一致:你可能会发现买跑鞋和天气变暖之间的联系。这意味着如果你发现跑步短裤和温暖天气之间的联系,它可能是一个实际的原因。几个一致的原因使你更有可能在寻找一个真正的原因。
- 这一事件是否可以用其他对立的原因来解释:也许跑鞋的购买在温暖的天气里会增加,因为它们在夏天比较便宜。如果你能想出其他几个对立的原因,很可能你没有看到真正的原因。
当你在一个数据科学团队工作时,要时刻注意竞争对手。
我曾经为一个州教育部的数据科学团队工作过。该团队正在创建一个应用程序来更好地理解学生评估数据。数据显示,当学生使用软件程序进行评估(而不是书面评估)时,他们获得了更好的分数,如图 17-3 所示。这使得软件看起来非常有效。仅仅是使用计算机进行测试的行为就提高了学生的知识水平。
图 17-3。
Grade distribution, software vs. no software
从总体分布来看,大多数学生得了 B,很少学生得了 A。然而,在没有软件的情况下,几乎有 50%的学生获得 C 或 D,而对于获得 B 尤其是 A 的学生来说,更多的学生使用了软件。参见如何在 http://ds.tips/fRa5r
创建此图表。
这是一个伟大的软件营销。如果你使用它,它会增加你的分数。实际上,这没有多大意义。数据科学团队并不只是盲目接受这种因果关系。为什么从纸质考试转向在线考试会增加学生的学习?为什么他们的进步没有随着他们继续使用软件而增加?这一数据具有竞争原因的特征。
在一次提问会上,研究负责人提出了这个问题。她问了这个问题,“为什么我们的学生取得了更高的分数?”数据科学团队试图通过想象对立的原因来打破这个问题。他们问了几个有趣的问题。“当他们开始使用该软件时,还发生了哪些变化?”以及“有没有学生没有这种进步?”
事实证明,考试成绩的跃升有一个对立的原因,而且有更有力的证据证明真正的原因。事实证明,许多使用这种软件的学校都得到了州政府的拨款来改善他们的硬件。每个教室都得到了一打新电脑,作为鼓励学校使用新软件的一种方式。这些电脑让学生更频繁地参加考试,他们对问题变得更熟悉,他们的考试成绩也提高了。
当你在数据科学团队工作时,不要害怕质疑因果之间的联系。团队应该准备好创造对立的原因来解释某些事件。如果它们有意义,你应该调查一下它们之间的联系。你的一些最好的问题可能来自于排除这些对立的原因并找到一个真正的原因。
揭露误导性的统计数据
你可能会发现很多问题的一个领域是在看统计数据的时候。如你所见,统计数据不能代替事实。统计数据可能会说谎。事实上,很多统计数据都是骗人的。至少,他们说出了自己的真相。
当你在一个问题会议上,你的团队应该仔细评估统计数据。他们应该互相质疑,对团队之外的统计数据持怀疑态度。
在第四章中,你看到了计算平均值的挑战(政客的例子)。统计平均值可能给你一个答案,中位数可能给你一个不同的答案。通常,人们更喜欢其中的一个,这取决于他们想看什么。然而,还有许多其他的方式,你可以用统计数据撒谎。其中一些更难以捉摸。你必须仔细听才能注意到手法的巧妙。
其中之一是推断统计。当你用一个故事建立一个统计上的联系,然后你把这个联系和另一个故事联系起来。例如,假设一项研究表明,20%的时间里,人们一边开车一边发短信,如图 17-4 所示。一家试图销售汽车保险的公司可能会推出一则广告,上面写着:“五分之一的人在开车时发短信。确保你有好的保险。”
图 17-4。
Things people doing while they text
根据这项研究,几乎 20%的时间,人们在开车时发短信。发短信时第二高的活动是走路。参见如何在 http://ds.tips/f2asP
创建此图表。
注意手法的变化。一项统计数据讲述了一个关于短信的故事:大约 20%的时间,人们在发短信和开车。保险故事是关于一群人的。大约 20%的人在做一些事情。也许很少有司机发短信,但他们经常发短信,这会影响数据。你可能会在开车的时候发 20%的短信,但这并不意味着 20%的人边开车边发短信。一个普通人一天中可能有 5%的时间在吸烟。这并不意味着 5%的人吸烟。保险公司试图告诉我们的故事是关于安全的。它试图给人一种印象,即每个人都因发短信而分心。这些短信让驾驶变得更加危险。
让我们回到我们的跑鞋网站。想象一下,数据科学团队中的某个人强烈感觉到数据显示人们正在和朋友一起跑步,这支持创建一个新的推广。数据分析师制作了一份统计数据,显示 50%的客户将优惠券转发给他们的朋友,并勾选了将他们视为朋友的复选框。他建议多达一半的顾客和他们的朋友一起跑步。他认为,数据科学团队应该探索一个具有更多社交互动的网站是否能促进销售。乍一看,这听起来很有道理。这里真正发生的是,你团队中的这个人试图创建统计推断。
解决这个问题的最好方法是把统计数据和故事分开。对于一个跑鞋网站,你有两个故事:一个说顾客喜欢他们的朋友省钱,另一个说顾客和他们的朋友一起跑步。当你把它们看作两个独立的故事时,就更容易看出可能存在脱节。你可能想问你团队中的人几个问题。省钱和和朋友一起跑步有什么联系?有哪些统计数据可以显示有多少顾客和朋友一起跑步?这里有什么联系吗?
统计推断是提出有趣问题的一个很好的工具。只有当团队认为它们是事实时,它们才是危险的。它们可能是一些有趣的东西的影子,但它们不应该被当作证据。
您可能会看到误导性统计数据的另一个领域是当存在可疑的遗漏时。一个地方你可能会看到这是与规模的措施。想象一下,你的数据科学团队中的某个人使用了这样的统计数据:一次促销活动增加了 5000 个订单的鞋子销量,如图 17-5 所示。这听起来可能令人印象深刻。唯一缺少的是尺度的测量。你需要问一个关键问题。该网站通常每月有多少订单?如果是 50,000,这是一个很好的论据,证明你有一次成功的晋升。如果是 500 万,可能影响不大。
图 17-5。
Comparing 5,000 surge on a base of 50,000 versus 5,000,000
在上面的图表中,你几乎注意不到 500 万基数的激增。同样,如果你看看下面图表中的百分比变化,在 500 万的基础上增加 5000 几乎是不明显的。参见如何在 http://ds.tips/tRab2
创建此图表。
你也会看到百分比。也许团队中有人说红鞋销量上升了 500%,如图 17-6 所示。这是相当令人印象深刻的,当然,除非她从销售两个订单的红色鞋子到十二个。
图 17-6。
Red shoe sales went up by 500%
促销后,红色鞋子的销量可能会增加 500%;然而,你应该假设总销售额是每天 1000,这只是 1%的增长。参见如何在 http://ds.tips/5ugEc
创建此图表。
当你在数据科学团队工作时,注意不要把统计数据当成事实。有几种常见的方法可以让统计数据看起来像在讲述一个有趣的故事。你的团队需要提出关键问题,然后提出一些更有趣的问题,以获得更好的见解。
突出显示丢失的数据
问好问题的最好方法之一是检查缺失的信息。一点点缺失的信息可以极大地改变故事。有时数据不完整。其他时候,这个人故意省略信息,因为它讲述了一个不同的故事。你在广告中经常看到这种情况。
拿一个很普通的广告来说。你可能听说过一个流行的说法,五分之四的牙医向嚼口香糖的病人推荐无糖口香糖。这似乎是一种非常强烈的支持。然而有一点信息丢失了。一个恰当的问题可以改变整个故事。关于口香糖,牙医一般会告诉他们的病人什么?也许 100%的牙医告诉他们的病人永远不要嚼口香糖。在这些患者中,可能有 10%的人坚持说他们无法放弃这个习惯。
因此,对于这 10%,大多数牙医说,如果你坚持嚼口香糖,确保它是无糖的。如你所见,这是一个完全不同的故事。没有广告商会说,“100%的牙医说不要嚼口香糖,但是对于那些嚼口香糖的人来说,试试无糖的。”
在您的数据科学团队中,您将经常寻找缺失的信息。你会希望留意重要的信息,这意味着它将重塑你的推理。你可以随时询问更多的信息。真正的问题是缺少什么信息来重塑这个故事。你甚至可能会以讲述一个与原著大相径庭的故事而告终。
我曾经为一个组织工作,该组织试图找出为什么参与医学研究的男性多于女性。他们从实验室得到一份报告,称男性参与医学研究的可能性增加了 60%,如图 17-7 所示。数据科学团队的任务是试图找出为什么会出现这种情况。当数据科学团队查看这份报告时,他们问道:“我们遗漏了哪些重要信息?”有几条信息可能会有所帮助。他们还问,“他们有 60%的可能性参与其中,这意味着什么?”这是否意味着同等数量的男性和女性申请,但更多的男性接受了这项研究?也许接受的男性和女性人数相等,但实际上有更多的男性参与。
图 17-7。
Test takers and non-test takers—male and female
你可以用两种方式转动桌子。左边是男性和女性。大约 80%的男性是考生,而女性只有 30%。右边是考生和非考生。60%的考生是男性,而只有 15%的非考生是男性。参见如何在 http://ds.tips/6Wewr
创建此图表。
了解这些信息将会讲述一个完全不同的故事。其中一个讲述了更多男人被接受的故事。另一个故事讲述了更多的男人出现。
当你寻找丢失的信息时,你可以尝试一些方法。你应该做的第一件事是试图理解信息可能丢失的原因。也许有空间或时间的限制。给你信息的人可能不太了解这个话题。也许这个人有美化信息的动机。如果是这种情况,你可能会多花一点力气去寻找丢失的信息。
另一件你应该注意的事情是当这些数字被比较形容词包围时——比如快 60%、大 20%或瘦 30%。通常,这些短语有重要的遗漏信息,从中你可以引出一些有趣的后续问题,比如比什么更快、更好、更瘦?
最后,一个很好的方法来看看你是否有遗漏的信息,那就是试着采取消极的观点。为什么参与医学研究的男性比女性多很重要?让更多的女性参与进来有好处吗?
事实证明,这最后一个问题帮助团队找到了缺失的信息。让更多女性参与的好处是年轻女性更有可能服用处方药,这使得研究更加全面。他们可以测试更多的药物相互作用。
这个好处是问题的另一面。女性更难参与,因为她们可能服用了研究中不允许的处方。更好的表述这个统计数据的方式应该是,“60%被允许参与医学研究的人是男性。”这讲述了一个完全不同的故事。
当你在一个数据科学团队工作时,试着总是努力寻找丢失的信息。这些重要的信息可能包含数据告诉你的真实故事。
摘要
在本章中,您了解了在与数据科学团队会面时应关注的六个关键领域。您需要关注具有以下特点的问题:
- 澄清关键术语
- 根除假设
- 查找错误
- 查看其他原因
- 揭露误导性的统计数据
- 突出显示缺少的数据
您了解到,并非所有的问题都会涵盖这六个方面,但如果您关注这些方面,您的团队肯定会提出至少几个问题。在第十八章中,你将学习如何避免当你试图问一些很棒的问题时可能出现的陷阱。
Footnotes 1
乔治·卡林,《大脑排泄物》(美国:亥伯龙出版社,1998 年)。
十八、避免提出好问题时的陷阱
在避免陷阱这一章中,我将帮助你发现你在提问时可能遇到问题的四个原因,以及如何克服它们。
克服问题偏见
问题是从数据中获得洞察力的核心。你已经看到了很多帮助你的团队提出更好问题的技巧。除非你能坦然面对提问,否则这些技巧不会很有帮助。有许多不同的原因会让你在提问时遇到困难。以下是数据科学团队常见的四个原因:
- 自我保护
- 时间不够
- 经验不足
- 企业文化不鼓励质疑
在接下来的几节中,您将会更详细地看到这些。
自我保护
第一个原因是团队成员有保护自己的天然欲望。没有人想看起来是错误的或无知的。如果你和其他专业人士在一个小组里,质疑其他人的答案尤其困难。问一个好问题需要勇气。这会让你变得脆弱,尤其是如果你在一个非常看重答案的组织工作。
问好问题需要练习。如果你擅长这个,你会发现很多看似有答案的人实际上很容易受到质疑。这对你和团队的其他成员都有帮助。如果你不能解决简单的问题,你可能没有一个很好的答案。
时间不够
第二个常见的原因是团队没有足够的时间。如你所见,提问会让人精疲力尽。当你刚开始的时候,似乎每个问题会议都变得更长更复杂。当你没有时间问有趣的问题时,团队会干脆不再问,这就很难找到任何新的见解。
很多数据科学团队都陷入了这个陷阱。他们太专注于清理数据,以至于没有时间问有趣的问题。通常,组织的其他部分会强化这一点。做实事被看做是实实在在的工作。许多组织更喜欢忙碌的团队,而不是高效的团队。当这种情况发生时,每个人都非常专注于划船,没有人会花时间去问你的船要去哪里。
请记住,最干净的数据集是没有奖励的。不提供见解的数据科学团队将很难创造商业价值。
经验不足
第三个常见原因是团队没有足够的经验来提出好的问题。当团队成员来自工程、软件开发或项目管理时,这是很常见的。这些团队成员可能在整个职业生涯中都在努力成为一个知道答案的人。抑制这些本能并专注于提问可能很难。来自科学或学术界的团队成员可能会更容易完成转变。这就是为什么有一个好的组合可能更容易。
当团队刚开始时,他们倾向于问很多引导性的问题。这些问题包含了一个版本的答案。一个引导性的问题可能是这样的,“我看到更多的女性在我们的网站上购买跑鞋。你认为这是因为我们有更多女性顾客吗?”
这类问题并不能真正引发讨论。通常唯一的选择就是对方同意或者不同意。一个更好的问题应该是这样的,“为什么女性在我们的网站上购买更多的鞋子?”一旦团队的其他成员开始讨论,你就可以发表意见了。
企业文化不鼓励质疑
第四个常见原因是,数据科学团队存在于不鼓励质疑的企业文化中。社会科学家丹尼尔·扬科维奇 1 指出,大多数美国组织创造了一种行动文化。当这些组织面临一个问题时,他们的第一反应是冲进去创造一个解决方案。他们不希望任何人坐在那里问问题。所有人都在甲板上。
这种类型的反应在许多组织中运作良好。例如,如果你在客户服务或零售部门工作,你可能只关注眼前的解决办法。在数据科学中,这种类型的思维会产生问题。这将阻止团队学习任何新的东西。
数据科学团队不想听到的一件事是完成一些实际工作的巨大推动力。您不希望涉众说这样的话,“一旦您将所有数据上传到集群,您就可以提问了。”这表明他们仍然认为你的团队在完成一个项目,而不是在寻找关键的见解。
当你在数据科学团队工作时,要注意个人和组织对问题的偏见。提问是发现的第一步。如果你跳过这一步,你的团队将很难学到任何新东西。
摘要
在这一章中,你学习了提问时可能遇到问题的四个原因,以及如何克服它们。总之,本章详细介绍的四个原因如下:
- 自我保护
- 时间不够
- 经验不足
- 企业文化不鼓励质疑
在第五部分,你将学习讲故事的基本方面,从在第十九章定义一个故事开始。
Footnotes 1
丹尼尔·扬凯洛维奇,《对话的魔力:将冲突转化为合作》(西蒙和舒斯特出版社,2001 年)。
十九、定义一个故事
我的一位同事最近买了一台新的摄像机,并制作了一部关于他墨西哥之旅的短片。他有让视频看起来很壮观的软件。片头的演职员表看起来就像你在电影院看的电影。他有音乐、画外音,甚至还有一些特效。
我们坐在一起,看了他那部 15 分钟的电影。大约五分钟后,我想起了讲故事和看视频的区别。他没有努力让我加入他的旅行。这只是一个美丽地方的精彩镜头。我一点也不理解他的经历。15 分钟过得相当慢。结束两分钟后,我无法告诉你我刚刚看到了什么。
许多数据科学团队以同样的方式思考讲故事。如果你只是有美丽的视觉效果,那么故事会自己告诉自己。如果我放一个易于阅读的图表,那么观众就会理解其中的含义。在现实中,就像墨西哥的视频一样,制造美丽的东西并不会让它变得有趣。美丽可以增强体验,但它不能取代故事。
许多数据可视化材料关注于创建图表的技巧。数据科学团队需要记住,数据可视化和讲故事不是一回事。事实上,它们非常不同。一个漂亮的数据可视化就像一个精心设计的电影布景。它可能是背景的舞台,但它不会给你任何意义。这就是为什么你不看两个小时的美丽电影场景的视频。
什么构成了一个故事并不是一件容易定义的事情。有结构性的定义。它们展示了人物、斗争和达到一个重要目标的过程。希腊哲学家亚里士多德列出了故事的六个重要元素。这些包括情节、神话和奇观。 1
这些定义是一个很好的起点,但是它们只是给你一个故事元素的感觉。它们可能无法帮助你的团队与观众建立联系。这有点像试图通过专注于画笔和凿子来学习雕塑。相反,你应该把你的故事当作一种建立联系的方式。
对于您的数据科学团队来说,试着将一个故事想象成一种使用语言和视觉来帮助观众理解故事并将故事与更大的意义联系起来的方式。
这是你在讲故事时需要考虑的第一件事:你如何建立联系?你将如何帮助你的观众找到更大的意义?
这个定义需要记住一些事情。首先,你使用语言和视觉来建立联系。你所说的和你所展示的本身并不是故事。事实上,视觉效果经常会出现在你和你的观众之间。
想想你见过的最好的演示。你会说,“我真的不明白他们说了什么,但是图表太壮观了?”更有可能你说的是相反的。你可能会想起被误解的孩子,或者劳累过度的父母。十几张幻灯片可能已经淡出了你遥远的记忆。
定义的第二部分是“帮助”观众。记住,好的故事是为了观众的利益。没有什么比看一个数据科学团队谈论他们的成就更无聊的了。你在讲一个故事来帮助观众与材料联系起来。你所说的一切都应该是为了他们的利益。这意味着你不应该谈论过程或分享功劳。开始帮助你的观众。
最后,请记住,这一切都是为了建立一种联系,以帮助您的观众找到一些意义。当你做得很好的时候,观众会发现你试图传达的一些意思。也许他们只找到了部分意义。这可能是他们发现最紧密联系的部分。这很好,你可以用它来构建你的下一个故事。
重要的是要看到,你的演示文稿的美感和制作价值并不等同于一个好故事。如果我朋友少花点时间在特效上,多花点时间建立联系,我会从他的视频中获得更多。墨西哥是一个美丽的国家,有着丰富多彩的历史和精彩的故事。如果他只是从那里开始,那么我会觉得我们有共同的经历。我会分享他此行的更大意义,而不仅仅是看视觉效果。
现在你已经知道了一个故事的大致定义,你如何讲一个好故事并让你的观众参与进来呢?你将在本章中找到答案。
纺纱
当你做演讲时,有很多方法可以让你的听众分心,让他们参与进来并集中注意力是一个挑战。你的头上可能有一个钟,所以你的观众一直在看时间。现在,许多会议室都有玻璃门和玻璃墙,这会让你的听众被会议室外面的人分散注意力。试图在现代办公室里讲故事不是一件容易的事情。当人们在房间里时,你需要额外努力,专注于吸引他们。当你开始讲故事的时候,你想立刻开始编故事。
Spinning a Yarn
这是 19 世纪水手们在讲述一个好故事时使用的术语。当水手的一部分就是知道如何编绳。每根线都需要拧成一团,编织成一个强有力的故事。
当你的团队试图编织一个好的故事时,有五条关键线索可以关注:
- 激发你的观众的好奇心。
- 试着用类比或分享的经历与你的听众联系起来。
- 尽量不要用“我”或“我”这样的词。相反,使用“你”或“你的”你想把焦点放在观众身上。
- 问一些有趣的问题。
- 不要太认真。如果你风趣或者平易近人,你的听众会更容易接受你的想法。
下面几节将更详细地介绍其中的每一项。
激发好奇心
所以先从激发你观众的好奇心开始吧。想象你正在参加一个典型的会议。演示幻灯片上写着,“第四季度销售预测。”所以你知道在第三季度末有一个非常强劲的上升趋势。
想象一下同一个会议,但是幻灯片只显示了演示者的姓名。会议开始,演讲者介绍了自己。她开始说,最近几个月的销售额一直在上升,但数据科学团队不知道为什么。观众可能会问自己,为什么数据科学团队不知道为什么销售额会增加,并想知道这个故事会如何发展。换句话说,观众很好奇。他们想看演示者如何将开放式问题和答案编织在一起。如果你让你的听众保持好奇,他们会耐心听你讲述你的故事。
与你的听众联系起来并使用“你”
你可以尝试的另一条“线索”是分享一段可感兴趣的经历。当你讲述你的故事时,听众需要和你这个人产生共鸣。你不希望他们认为你是团队成员或部门代表。你希望他们想知道你,作为一个人,要说些什么。这将有助于他们将你所说的与他们作为观众已经相信的联系起来。
即使你作为数据科学家的工作是谈论数字,也不要从谈论数字开始。而是说一段经历。例如,“当我第一次看到这些数据时,它让我想起了人们在排长队时的感受。”然后继续描述排长队的问题,以及你可能如何失去顾客。
当你向你的听众讲述你的经历时,不要过度。请记住,您要尽量减少使用“我”和“我”这样的术语你在分享你的经历来帮助你的听众找到意义。你不只是告诉他们你自己。你以自己为例,说明他们可能会如何处理数据。
问有趣的问题
您可能还想分享您的数据科学团队的一些问题。通过这本书,你已经学会了如何问有趣的问题。你可以用同样的问题来激发听众的好奇心。如果你的团队觉得这些问题很有趣,那么你的观众也很有可能会觉得这些问题很有趣。把问题和经历交织在一起。让他们觉得他们正在和你一起寻找答案。一个好的问题会让你的听众渴望得到答案。
保持清淡
最后,记得不要太认真。当你的观众认为你过得很开心时,他们自然会被你的故事吸引。这再次激发了他们的好奇心。他们可能想知道为什么你看起来这么开心。别傻了;那会损害你的信誉。相反,试着创造一种轻松的体验。你甚至可以在你的团队提出问题的方式中加入一些幽默。听众希望你能帮助他们理解你所说的话的整体含义。让他们知道这是一个有趣的旅程,他们更有可能加入。
这五根线将帮助你编织一个强有力的故事。这些线索中的每一条都会增加你讲故事的整体力量。你也许不能全部使用它们,但是试着记住它们是如何交织在一起,让观众参与进来并寻找意义的。
编故事
既然你已经探索了你用来编织故事的五条不同的线,让我们来看一个更大的主题,看看你可以用来吸引听众的不同类型的叙述。
叙事几乎就是你可能会说的任何东西。电视广告是一种叙事。我说我等了很久才买到电影票也是一种叙事。并不是所有的叙述都是故事,记住故事可以帮助观众理解更大的意义。我等了很长时间才买到电影票,这并没有更大的意义。我没有努力寻找真相。我只是想看新的星球大战。
你可以使用不同类型的叙述来帮助你的观众过渡到你更大的故事。当您试图向观众解释数据科学概念时,有五种类型的叙述特别有帮助:
- 轶事
- 个案研究
- 例子
- 情节
- 小插图
在下面几节中,您可以找到更多关于这些内容的信息。
轶事
先说趣闻。轶事是对与你的大主题相关的事情的简短的个人描述。这里的关键词简短且相关。你希望你的轶事足够长,有趣,但又足够短,不会分散你对大故事的注意力。在你开始讲故事的时候,一个轶事是很有用的。例如,假设你正在做一个讲故事的会议,讲为什么很多顾客在结账前放弃购买。你可以从讲述一个小故事开始,讲一次你没有购买任何东西就离开商店的经历。你可能会说这是由做决定的压力造成的。然后,你可以把这一点延伸到为什么这么多顾客可能会放弃购买的更大故事中。
个案研究
另一种很好的叙事类型是案例研究。案例研究是当你转述一个小问题以及它是如何被解决的。当您试图展示一个可能的解决方案时,如谈论过去的数据科学挑战和解决问题的解决方案,案例研究非常有用。假设您想通过案例研究来找出客户放弃购买的原因。你可以解释说,当网站重新设计后,购买量出现了小幅下降。设计团队简化了网站,购买量又上升了。该案例研究与一个更大的故事有关,数据科学团队认为结账流程过于复杂。
例子
第三种类型的叙事是一个例子。示例类似于案例研究,只是它们不一定列出挑战和解决方案。它们通常也是关于其他人的。当你试图证明你的大故事的某个部分是正确的时候,使用例子。也许你会指出,其他几家公司也在努力简化客户的网上购物方式。因此,你的听众将要听到的故事对你的公司来说不一定是不寻常的或孤立的。
情节
第四种类型的叙事是场景。一个场景是当你列出一系列事件,并要求你的观众考虑每一个结果。场景没有被广泛使用,这很不幸,因为它们通常是让你的观众思考未来的好方法。很多演讲者认为场景听起来太幼稚,所以如果你决定使用场景,确保它不要太简单。
一个场景通常在讲故事开始时效果最好。也应该用第三人称来讲。你不希望这个场景听起来像个人轶事。例如,您可以转述以下场景:Julie 正在午休,还有五分钟时间购买她想要的产品。三分钟后,她找到了她想要的商品,并把它放进了购物车。就在她准备结账时,她看到了另外四件她也想要的产品。她没有足够的钱买下这五样东西,那她该怎么办呢?她会放弃推车,以为她会回来,然后忘记吗?
小插图
最后一种叙事是小插曲。小插曲就像一个小场景或一部小电影,通常以第三人称讲述。好的插画会吸引观众的注意力。你可能想以一个关于你沮丧的顾客的小插曲来开始你的故事。比如,“为什么他们总是重新设计网站?我只是在最后一次重新设计后才发现所有东西都在哪里。”
这五种叙事风格应该能帮助你提高听众的参与度。请记住,这些叙述本身并不是故事。他们可以帮助你,但他们不能取代你更大的故事和它的意义。
摘要
在这一章中,你学习了“编故事”这个短语,以及如何使用五个关键的“线索”将它融入到你的故事中
- 激发你的观众的好奇心。
- 试着用类比或分享的经历与你的听众联系起来。
- 尽量不要用“我”或“我”这样的词。相反,使用“你”或“你的”你想把焦点放在观众身上。
- 问一些有趣的问题。
- 不要太认真。如果你风趣或者平易近人,你的听众会更容易接受你的想法。
然后你学习了五种类型的叙述(轶事,案例研究,例子,场景和小插曲)。当您试图向观众解释数据科学概念时,可以使用这些工具。在第二十章中,你将学习如何理解故事结构。
Footnotes 1
南 h .布彻,亚里士多德的诗学。(麦克米伦,1961)。
二十、理解故事结构
讲故事不仅仅是对发生的事情的简短描述。如果你告诉某人你去杂货店买了一加仑牛奶,你不是在讲故事。故事有着复杂而一致的结构。需要有冲突和情节。在这一章中,我们将谈论一个典型故事的要素。你可以用这些元素来编织一些东西,抓住你的观众的想象力。光描述数据是不够的。一个复杂的数据科学故事必须展示洞察力的重要性。您还会发现,您的许多数据科学故事将遵循类似的情节。当你看到这些模式时,你可以用一种方式来组织你的故事,这种方式将帮助你的观众从你的团队的洞察力中提取意义。
使用故事结构
您已经看到了如何将不同的线索编织成一个故事。你也可以用不同的技巧来吸引你的观众。现在,让我们来看看将所有这些整合到一个更大的结构中的不同方法。
您的数据科学故事应该有三个阶段:开始、中间和结束。你应该利用这些阶段来帮助观众找到你故事的意义。在每个阶段,你都想做一些不同的事情。
在第一阶段,与你的观众一起建立环境。第二阶段应该引入冲突。然后,你应该通过创造一些动作来结束故事。也许你解决了冲突,也许人物从斗争中学到了什么。
设置上下文
背景是你设置场景和角色的地方,介绍他们并把他们放在时间和空间中。您希望尽快建立上下文。许多人花太长时间来设置上下文。你应该花足够的时间来介绍角色并把他们放在某个场景中。
例如,假设你的研究负责人正在讲故事。她以设置上下文开始。她开始说道,“我们一直在密切关注在我们网站上购买鞋子的顾客。我们可以看到他们住在哪里,并将其与他们买鞋的频率联系起来。”这就建立了一个背景:购买跑鞋的顾客,与他们的居住地相关联。
引入冲突
中间,开始说冲突。实际上,冲突是故事中最令人难忘的部分。前一个例子中的研究负责人可能会说,“居住在城市地区的顾客更有可能购买跑鞋。事实上,人口越密集的地区,他们购买跑鞋的频率越高。我们觉得这很奇怪。作为跑步者,我们并不喜欢在人口密集的地方跑步。大型车辆太多,车流量太大。所以我们决定进行一些实验。”
冲突是你吸引观众的地方。他们可能已经在想这是意料之外的。研究负责人用个人轶事来激发他们的好奇心,他们甚至可能会提出自己的理论。也许他们认为这是因为顾客更年轻,或者他们住得离大公园更近?
接下来,研究负责人想要创造一些行动。这是她通过解释冲突的解决方案来解决冲突的地方,她在哪里寻找数据,以及她发现了什么。她应该稍微谈一谈所采取的行动,但同时不要过多地解释细节。她可能会说,“我们做了一个实验来观察他们的年龄。这些客户往往更年轻,但一旦我们进行了调整,仍然存在相当大的差异。我们还看了一些地图,在这些地图上我们有很多活跃的客户。我们想看看是否有更多的跑步路径。事实证明,一般来说,城外有更好的路。"
现在,研究的领先将观众吸引到这场斗争中。她不想花太多时间谈论所有的实验。与此同时,她仍然想刺激他们的好奇心,甚至可能建立一些期望。
Note
在本章的后半部分,你会发现更多关于如何表达冲突的内容。
结束故事
在故事的结尾,她说了这样的话,“事实证明,我们发现的最强的联系是,如果顾客住在健身房三英里以内,他们更有可能购买跑鞋。”这就是你在图 20-1 中看到的。
图 20-1。
Customers who live near a gym
橙色虚线表示住在离健身房不到三英里的顾客在跑鞋上的平均花费,灰色虚线表示住在离健身房三英里以上的顾客在跑鞋上的平均花费。这两个变量之间有明显的负相关性。参见如何在 http://ds.tips/pUhe3
创建此图表。
她以一个小插曲结束,说道:“想象一下我们的客户住在体育馆附近。他在室内跑步,并且一直在寻找保持身材的新方法。光是在健身房旁边,就足以让他买更多的跑鞋。”
她通过引入新的见解结束了这个故事。也许她甚至会问观众是否有任何问题,并利用这些问题为下一次讲故事提出一系列新问题。
给你的故事一些结构可以帮助你的观众从你的故事中获得意义。记住,你要把最大的努力放在故事的中间。观众最有可能记住这场冲突。然后你可以用一个行动项目结束,甚至获得更多问题以获得更深入的见解。
介绍剧情
在上一节中,您了解了故事中基本上有三个阶段(背景、冲突和结尾)。在上下文和冲突之间,你需要包含一个情节。人物和情节使这个故事令人难忘。例如,在莎士比亚的《罗密欧与朱丽叶》中,罗密欧和朱丽叶是人物,他们的爱情是情节的一部分。他们的心碎和死亡是剧情的最后一块(抱歉剧透)。
在数据科学中,情节是你讲故事的主要部分。这是数据所说的和你对数据含义的解释。你的故事情节不一定要新颖才有意思。是你如何在上下文中把情节和人物编织在一起,让你的故事变得有趣。
在克里斯托弗·布克的《七个基本情节》中, 1 他认为所有的故事都只有几个情节。他说人类在听故事时有非常相似的心理需求。不是每个人都同意这对于文学来说是正确的,但是对于数据科学故事来说几乎肯定是这样的。你的观众只会寻找一些不同类型的情节。
布克的七个情节是:
- 白手起家
- 战胜怪物
- 探索
- 航行和返回
- 喜剧
- 悲剧与重生
在讲述您的数据科学故事时,请记住这些情节。这些图有助于准确定义你想要传达的内容。数据喜剧不太可能受到观众的欢迎,但其他六个情节只需要稍加调整就可以应用到你的讲故事环节中。
白手起家
最常见的故事之一是“白手起家”几乎每个组织都对他们可以用来创造新收入的洞察力感兴趣。也许你的团队有一个新产品的想法。也许你已经找到了一种方法来扩展你已经拥有的产品。当你讲述这种类型的故事时,想想你如何以一种与白手起家的情节相一致的方式来讲述这个故事。描述公司现在的状况,为未来的财富铺平道路。记住要清楚地展示情节,以帮助阐明你的故事,并帮助观众找到其中的含义。
战胜怪物和任务
数据科学故事的另外两个常见情节是“战胜怪物”和“探索”许多组织试图利用数据来应对危险的挑战。也许你的产品有了新的竞争对手,你的数据显示销量严重下滑。用你从数据中学到的一些聪明绝招,把你的计划集中在战胜这个怪物(竞争对手)上。鼓励你的观众开始探索。如果你试图说服你的观众做一些不同的事情,比如尝试一项新的商业冒险,或者介绍一种新产品,这一点尤其正确。这个情节把你的目的地浪漫化了。
航行和返回
一个不太常见的情节是“航行和返回”,这有时被称为死后。例如,你开始了一个新项目,并决定它不值得追求。现在,团队需要检查数据,并确定是否有任何教训要学习,或者经验中是否有任何价值。随着数据科学越来越受欢迎,你会看到更多这样的图。该组织将希望从这些失败中吸取教训。所以,在未来,你可能会看到更多的航行和返回讲故事的会议。
悲剧与重生
一个你不常听到的故事是数据科学悲剧。大多数组织更喜欢掩盖他们的悲剧。你可能会在政府项目中看到更多的数据科学悲剧,因为这些项目的观众非常有兴趣了解悲剧的全部范围。一个数据科学的悲剧故事将是对所有出错的事情的全面分析。它不会像尸检一样关注教训;它只会专注于理解这个令人遗憾的故事的全部。
最后,你可能会有一个关于重生的故事。有时公司看着数据,决定他们目前的业务是不可持续的。甚至像 IBM 这样的大公司也可能决定彻底改变他们的业务。IBM 从低利润的个人电脑和硬件销售模式转变为高利润的服务和咨询业务。他们这样做是因为现任 CEO 能够讲述一个令人信服的故事。这是青蛙王子故事的高科技版本。
呈现冲突
请记住,故事是用视觉效果来帮助观众理解某种意义的故事。人们通常认为你通过成功和成就的故事与他人联系在一起。这就是为什么许多商务会议开始时都有一些新的成就或目标。观众可能会鼓掌,但他们并没有真正理解任何意义。实际上是斗争,或者冲突,帮助人们找到意义,把你的观众和故事联系起来。
当你在讲故事时,你可能会有一整天都在过滤信息的观众。如果您与高层利益相关者一起工作,这一点尤其如此。他们一天要查看数百条信息,可能还要看几十份报告。要成为一个高效的数据科学团队,你必须以不同的方式与你的受众沟通。
你已经看到你的数据是如何讲述一个故事的。事实上,您已经看到了相同的数据如何讲述几个不同的故事。你的挑战是获取无生命的数据,并对其进行逆向工程,使其包含创建它的人的一些人性。你想要传达一场斗争,并为一个数据科学故事创造一个情节。
那么这看起来像什么?假设您在一家大型信用卡处理公司的数据科学团队中工作。您的团队发现,信用卡客户就在他们难以偿还账户之前改变了他们的消费模式。这些客户在陷入财务困境之前增加了信用卡的使用金额。您的数据科学团队在数十万张信用卡中发现了这种模式。
你的研究负责人可以用几种不同的方式展示这些信息。也许她展示了一个简单的线形图,显示了在顾客陷入困境之前消费的上升,或者讲述了一个关于成千上万顾客的故事。这两种场景都提供了信息,但可能不会将您的受众与数据联系起来。呈现信息的最佳方式是讲述一个有趣的故事,包括一个真实的斗争和冲突的情节。
首先创建一个真实姓名的角色。这不应该是一个真实的客户的名字,但它可以是一个基于您的客户的大多数共同特征的字符。您的研究主管可以这样开始她的讲故事环节:“我们的数据科学团队今天想谈谈我们的一位客户。让我们叫他艾伦吧。两个月后,艾伦将无力支付他的信用卡账单。他成为我们的顾客大约有六年了。在过去的两个月里,他已经花光了他的信用额度。这对艾伦来说很不寻常。他今年 48 岁,用信用卡支付食品杂货和交通费用。通常,他只用信用卡支付机票和酒店账单。我们知道艾伦将无法支付他的账单。现在我们该怎么办?”
通过以这种方式呈现数据,研究负责人结合了成千上万客户的数据,并创建了一个具有真实人类斗争的情节。你的观众应该能够以一种更有趣的方式与这些数据联系起来。也许他们在考虑是否对艾伦有义务。他们应该给他写信还是打电话?
不仅给角色起个名字很重要,而且你还想填充一些关于角色生活的细节。观众发现艾伦已经 48 岁了。他成为顾客已经六年了。这些细节有助于增强斗争和构建情节。
观众会更容易理解数据背后的含义。谈论如何对待艾伦要比谈论他所代表的成千上万的客户容易得多。有一个真实的情节和一场真实的斗争,并通过一些细节得到了加强。
尽管艾伦并不存在,但为了故事的目的,他变得真实了。他能以一种数据本身可能无法显示的方式帮助显示冲突。原本只是静态数据的东西变成了一个有真实斗争、细节和情节的故事。
摘要
在本章中,您了解了如何将数据科学故事的所有元素整合到一个更大的结构中。你学会了如何与你的观众一起设置背景,引入冲突,并创造一些行动。然后,你检查了不同类型的情节,你应该包括在上下文和冲突之间,以及如何呈现冲突。在第二十一章中,你将学习如何定义故事细节。
Footnotes 1
克里斯托弗·布克,《七个基本情节:我们为什么要讲故事》(A&C·布莱克,2004)。
二十一、定义故事细节
在第二十章中,你看到如果故事有情节和冲突,人们更有可能与故事联系起来。斗争吸引人们进入你的故事。在你建立了你的情节和冲突之后,你想让你的故事保持动态。一个好的方法是在你的故事中加入细节。这些细节就像小小的精神便笺,帮助你的观众记住更大的情节和斗争。这有助于他们在听的时候建立一个心理图像。
我曾经为一个组织工作,该组织试图利用数据科学让人们参与他们的医学研究。事实证明,很多人害怕针头——特别是用于血液测试的针头。原来有一部分人害怕针头和血液。这个截面是很多人。
我不是这两者的粉丝,我当然能理解这对医学研究的影响。如果涉及到针头,你会失去很多人。如果涉及到针头和血液,你会失去一大群人。这种对针头和血液的恐惧让该组织陷入了困境。他们需要通常对研究不感兴趣的人开始参与。
数据科学团队提出了一些很好的问题,并创建了几份报告。这些报告引出了一个有趣的故事。他们发现,如果有人参与并有一个非常好的经历,他们更有可能参与未来的研究。因此,如果一个不喜欢针的人在无针研究中有了积极的体验,这个人可能会参加未来包括针的研究。
数据科学团队想要讲述这个故事。该研究负责人决定,她想使用一个真正的参与者,只是改变她的名字。所有参与者都填写了一份深入的申请,并由一名护士进行评估,该护士也填写了一些信息。我们的研究负责人在她的故事中使用了其中的一些信息。这些应用程序是不同细节的宝库,提供了护士和参与者的观察结果。
这位研究带头人以一则小轶事开始。她说:“当我还是护士的时候,我总能分辨出谁害怕打针。他们总是以某种方式交叉双臂。他们抓住自己的双肘,以保护自己免受手臂戳伤。有很多这样的人,我们需要他们参与我们的医学研究。所以我要告诉你们一些我在我们的一篇报道中发现的一个人。
“让我们叫她特雷西吧。她参与了我们正在开发的一种帮助人们睡眠的药物的医学研究。在研究的第一天,她带着自己的枕头出现了。她肯定对它的效果很乐观。她希望这种新的药丸能帮助她,因为她在压力大的时候很难入睡。
原来,特雷西是没有从药物中获得任何好处的参与者之一。临走时,她告诉护士,她的父亲是一名医生,所以她觉得自己有义务参与医学。她说她永远不会成为一名医生,因为她害怕血和针。几个月后,她决定参加流感疫苗试验。这项研究需要用于疫苗接种和随后的血液测试的针头。那么 Tracy 为什么决定参加呢?"
这位研究负责人以描述行动号召结束了她的故事。数据科学团队认为,让人们在没有针头的情况下参与研究是增加潜在参与者数量的最佳方式。
现在,想想你刚才听到的故事。你记得的一些事情是什么?你记得参与者的名字吗?你还记得她为什么参加第一项研究吗?你可能会,但很可能你记得细节。帮助你创造一个精神形象的小花絮。你可能记得她带了个枕头或者她爸爸是个医生。
这些细节有助于你从头到尾地讲述你的故事。他们创建快照来帮助你的观众了解全局。当您讲述您的数据科学故事时,请尝试使用这些小事实来为您的故事增添活力。他们帮助你的观众联系到剧情和斗争。
报道不说明问题
商业演示很无聊。它们并不是为了有趣而设计的。它们是用来传达你的状态的。它们就像是对利益相关者的口头“回复”。这通常适用于典型的状态会议,但是您希望您的数据科学团队做一些不同的事情。
请记住,数据科学就是将科学方法应用于您的数据。你的团队将探索数据,研究问题,寻找关键的见解,并解释许多不同的结果。你的团队面临的大部分挑战都围绕着解释数据。你需要分解数据并解释其含义。
我曾经和一个数据科学团队一起工作,该团队专注于向信用卡客户提供促销。团队问了很多有趣的问题。其中一些是关于他们客户的购买习惯。其中一个问题引出了一个关键的见解。该团队想知道客户是否接受成批促销(一次不止一次促销)。事实证明,这个问题导致了一些非常有趣的报告,这些报告显示,如果客户接受了一次促销,他或她将更有可能接受下一批促销。
数据科学团队希望在他们的一次数据故事会议上展示这一见解。研究负责人想出了一个演示文稿,但不是一个故事。她只是想解释那些仍然是探索性的发现。陈述没有试图解释这些发现意味着什么。该团队只是想指出,顾客更有可能接受成批促销。然后,他们让房间来决定如何处理这些信息。
我提醒研究负责人,讲故事的环节并不是仅仅展示信息的合适场所。她需要编织一个有趣的故事,这样房间就会被吸引并与意义联系起来。
我问研究负责人,为什么她认为顾客会成批接受促销。她说,数据表明,大多数消费者都是分批拿到钱的,这使得他们在上涨时花得更多,在下跌时花得更少。顾客也更有可能在他们人生的某些阶段接受促销。
我们都认为这是传达这一信息的更好方式。房间里的每个人都会有相同的经历。在他们生活的不同时期,他们都有或多或少的钱可以花。为什么不利用这种共享的体验来传达顾客是如何接受促销的信息呢?研究负责人提出了一个新的演示文稿。她创作了一个名为“人们生活中不同时期促销的影响”的故事
她以讲述她过去的一件轶事开始了她的陈述。她说她上大学时有一个室友。他们过去常常收到邮寄的优惠券,提供买一送一的饭菜。下课后,她的室友会回家问邮件里有什么,这样他们就能知道那天晚上去哪里吃饭。她说经过四年的大学生活,他们最终对食物有了相同的口味。
一些人笑了——他们已经开始思考人们在生活的不同时期是如何利用商业促销的。对于研究负责人来说,呈现她故事的其余部分是一个容易得多的过渡。她描述了大多数顾客在一生中的不同时期是如何接受不同比例的促销活动的。类似情况下的顾客会成批接受促销,而不是源源不断。
与故事相结合的轶事极大地鼓励了小组成员的参与。许多观众变得非常好奇,并问了这样的问题,“这是否意味着,如果有人觉得自己正处于人生中的脆弱时期,促销可能会更有效?”另一名观众问道:“团队离预测客户何时会进入接受大量促销活动的阶段还有多远?”
如果她只是开一个典型的演示会议,她绝不会有这种程度的参与。这个故事吸引了他们,并帮助他们将数据与自己的经历联系起来。观众会想到他们更有可能接受升职的时候。然后,他们能够提出有趣的问题,并以此为基础。
了解你的观众
当你讲故事时,最大的挑战之一是了解你的听众。你的听众中的每个人都有他或她自己对世界的看法,并且会带着一大堆假设和信念来听你的故事。你的听众在那里是因为他们想从你那里听到一些东西。他们可能还不知道这是什么,但他们听到后会有所反应。
我曾经为一个大型政治活动工作过。该活动试图利用技术来更好地了解他们的观众。竞选开始几个月后,这位候选人向听众发表讲话,听众中包括几十年来失去许多工作的人。他站在一座旧工业建筑的骨架中,谈论新的工作培训。他讲了一个关于每个人如何从高科技技能中受益的故事。观众鼓掌,但并没有真正理解这个故事。
几天后,这位候选人的对手去了一个类似的地方。他在一条慵懒的棕色河边的一个废弃的旧仓库里发表了演讲。他以“我知道你们很多人都不确定”开始了这个故事。你不确定你的生活方式是否有未来。”然后他讲述了一个关于如何保存重要物品的小故事。故事结束时,目光呆滞的观众鼓起掌来,直到候选人离开舞台。
第一个候选人显然不了解他的听众。观众不想回去学习如何成为会计师。他们只是想让事情回到原来的样子。一旦第二个候选人在这个层面上对他们说话,他们就能理解这个故事。
政治运动当然不同于数据科学团队;然而,该原则仍然适用。你越了解你的听众,你就越能有效地讲述你的故事。
了解你的听众的最好方法之一是一种叫做热身的技巧。这是你四处走动,和一些观众聊天的时候。他们中的一些人会直接告诉你他们在找什么。你可能会听到这样的评论,“我很好奇这和我正在做的事情有什么联系。”然后你可以问她:“你在忙什么?”如果这样的事情发生了,你可能想要实时修改你的故事来满足你的观众的期望。
你通常可以把你的听众分成五个不同的群体:
- 观察者:观察者是因为会议在他或她的日程表上而出现的人。这个人对话题不是很了解,期望很小。你能为这个观众群体做的不多。试着让你的故事保持有趣,限制你的首字母缩略词或技术术语。
- 看门人:看门人在观众中,看你的故事如何影响他或她的工作。这是一个很好的例子,说明当你让房间温暖起来时,你会发现什么样的人。如果你在你的故事中使用一个例子,试着直接把它和那个人所在部门的人联系起来。这将有助于这个人建立明确的联系。
- 经理:听众中的经理对相互依赖感兴趣。同样,你可以用例子来展示部门之间的互动。你也可以在故事的结尾创建明确的行动项目。这个受众群体通常会问最多的跟进问题。
- 专家:你的听众中的专家总是会要求更多的细节。如果你不小心,专家可能会打乱你的故事,让它变得不那么有趣。如果他们这样做了,一定要解释新的细节,以便其他观众可以继续参与。
- 高管:你的听众中的高管希望收集更大问题的答案。如果在你的故事结束时,高管问了这样一个问题,比如“你如何看待这件事对公司其他人的影响?”这总是一个好兆头如果观众中有高管,不要放太多幻灯片。如果他们盯着你的幻灯片,他们就没有听你在说什么。
如果你努力识别你的读者,了解他们在寻找什么,他们就更有可能与你的故事联系起来。如果你把你的听众分成这些小组,你将有更好的机会满足他们的期望。
相信你所说的
约翰·斯坦贝克曾经说过:“如果一个故事不是关于听者的,他就不会听。。。一个伟大而持久的故事是关于每个人的,否则它不会持久。陌生和外国的东西并不有趣——只有非常个人化和熟悉的东西才有趣。” 1
当你在讲故事时,你最有说服力的能力是你自己对这个话题的兴趣。你的听众会一直检查你是否相信你所说的。如果他们感觉到你致力于讲述你的故事,他们会更容易理解。
当我在法学院的时候,我选了一门关于诉讼的课程。这门课是关于如何就你当事人的遭遇联系陪审团。陪审团总是对你当事人的故事很好奇。他们是怎么到那里的?为什么他们会被审判?
我们的教授已经和陪审团谈了几十年了。他长长的白胡子让他看起来几乎像绝地武士。他给了我们一些简单的建议。他说,讲故事的时候,尽量不要让它听起来不平凡。不要试图就所发生的事情编造一些牵强附会的故事。相反,专注于你所知道的。讲一个关于普通事物的好故事,因为你所知道的是你唯一能真实呈现的。当你不相信自己说的话时,陪审团能感觉到。说出你所相信的,哪怕简单平凡。清晰而充满激情地说出来就好。
当你试图与你的观众沟通时,也是如此。如果你不相信你的故事有趣,你就很难讲出来。假装激情是非常困难的。
如果有人对她的话题充满热情,她几乎总能以一种有趣的方式谈论它。我曾经听过一个关于飞行时免费航空杂志的介绍。演讲者对这个话题充满热情,吸引了很多人。我也听过关于国际政治动荡的报告。你可以看出演讲者对这个话题不感兴趣,而且对这个话题的描述也很专业,没什么意思。
你在数据可视化中经常看到这种情况。一些研究领导认为,一个好的数据可视化可以给一个无趣的故事添加“流行元素”。如果你自己都不觉得有趣,即使是最漂亮的图形也不会让你的故事更有趣。你的观众会从你身上获得兴趣,而不是从你在屏幕上展示的任何东西。
你可以做几件事来以有趣的方式呈现一个故事:
- 确保题目有趣。如果你不能呈现一些有趣的东西,那就不要呈现任何东西。如果你对有多少人买了红色跑鞋不感兴趣,你就无法讲述一个有趣的故事。在你的故事中寻找一些有趣的东西。找不到就不要讲故事。
- 把自己和故事联系起来。告诉你的观众你为什么觉得它有趣。也许讲一个你如何去美国西南部旅行的故事。你注意到人们穿着你在这个国家的其他地方看不到的颜色。所以你回来就想看看有没有办法更好的迎合这群客户。谈谈你实现目标的步骤。
- 听起来像个真人。许多组织给他们的员工施加了很大的压力,让他们变得高效和超人,就像一群只关注工作表现的瓦肯人。他们回避激情和情感。这不太适合讲故事。当人们脆弱的时候,他们更容易与人交流,并且可以自嘲。
- 分享你真诚的感受。你不希望你的讲故事会有一种支持团体的感觉,但是分享一种感觉会帮助你的听众相信你所说的。
记住你是你演讲中最重要的东西。漂亮的图表、聪明的轶事和成堆的数据都无法弥补你对这个话题的热情。如果你不能用有趣的方式来解释,即使是最非凡的数据也会显得乏味。关键是要确保你相信这个故事是有趣的。如果你不能说服你自己,你就不能说服你的观众。
摘要
在这一章中,你学到了不仅仅是报告数据,你需要做一些不同的事情。对你来说,熟悉你的受众并了解受众中不同类型的人(观察者、看门人、经理、专家和高管)是很重要的。你也学会了相信你所说的,这样你就可以用一种有趣的方式来讲述你的故事。在第二十二章中,你会发现如何将你的故事人性化,让人们认同你所讲述的内容。
Footnotes 1
约翰·斯坦贝克,《伊甸园之东》(纽约:企鹅图书公司,1986 年)。
二十二、人性化你的故事
我们花了很多时间谈论故事。你已经看到了一个简单的故事和一个有情节、人物和冲突的故事之间的区别。你也看到了如何以吸引观众的方式讲述一个故事。尽管如此,这是一本关于数据科学的书。这是关于使用科学方法来更好地理解你的数据。最终,你会有数据,并希望观众以一种有意义的方式与它联系起来。然后你会让观众通过采取一些行动来创造价值。
您已经看到了如何首先创建故事,因为这是您展示数据的方式。现在,您需要对数据的漩涡进行逆向工程,并反映出创建它的有缺陷的、情绪化的和不可预测的人类。这是主要的挑战,也是数据科学团队与数据分析师的区别。作为一个数据科学团队,你的工作是揭示数字背后的人性,这就是为什么你不应该只是用数字的语言来传达信息。
这么想吧。你在机场,发现一部手机错放在一个空座位上。此人没有锁定手机,您可以访问他们的所有数据。你如何找到手机的主人?你需要从这部手机里得到什么数据才能找到机主?
很有可能,你不会从分析手机费用和有人会退回手机的可能性(统计模型)之间的关系开始。此外,如果你重新讲述这个故事,你可能不会使用数据和统计的语言;例如,“我找到了一部智能手机,但我把它留下了,因为很有可能有人会回来。”相反,你应该从以一种更“人性化”的方式重现故事开始。也许这个人在等飞机,然后跑去吃东西。你查看智能手机上最近的通话记录,看机主是否在离开前给某人打过电话。你知道,人们经常在登机前给他们的丈夫、妻子、女朋友或男朋友打电话。也许你可以看看日历,看看有没有航班信息。
你不会认为智能手机是一个数据仓库;你认为它是一个珍藏着一个人的照片、视频和联系人的设备——一些有人会想念的东西。最终,您将处理这些数据,因为在那里您可以找到智能手机的电话号码、日历和联系信息。在这个思考过程中,你以故事开始和结束,数据只是中间的媒介——希望在故事的结尾,这个人能与他们的手机重聚。
在保罗·史密斯的书《以一个故事开始》中,他描述了宝洁公司的首席执行官 ?? 如何来到演示现场,背对着幻灯片坐着。史密斯描述了他给首席执行官做的一次演示,他一次都没有转身去看数据。演示结束后,他意识到这不是偶然的。大公司的 CEO 无时无刻不在看数据。他们知道数据是载体,演讲者讲述的故事具有全部价值。这就是为什么当你在讲故事的时候,你不想把太多的重点放在数据上。除非数据与受众联系起来,否则它将没有任何价值,而数据本身无法做到这一点。这是你讲述的关于数据的故事,帮助观众理解其中的含义。
在演示过程中,你希望你的听众放下笔,合上笔记本电脑。你希望他们看着你,只是偶尔瞥一眼你展示的数据。如果他们花太多时间看图表,那么他们可能在想别的事情。只有在故事将你的受众与数据联系起来,并赋予它一些意义之后,你的受众才会被刺激而采取行动。
视觉效果介绍
有许多关于数据可视化的好书和课程。在第八章,我推荐了科尔·努斯鲍默·克纳弗里奇的《用数据讲故事》和爱德华·塔夫特的《量化信息的可视化展示》2 。 3 这两本书都有非常战术性的讲故事观点。他们谈论伟大的视觉如何创造伟大的故事。它们暗示着数据可视化与精彩的故事讲述密切相关。你在两本书中都可以看到这一点。
用数据讲故事包括六课。前面的课程包括选择显示器和消除图表混乱等内容,最后一课是讲述一个故事。你应该反过来想这些课,讲故事的课出现在其他课之前。在考虑图表和图形之前,您的数据科学团队需要理解数据,并讲述一个故事来帮助观众找到一些意义。
这些书和课程非常棒,但是它们夸大了数据可视化的重要性。图表和报告当然有助于讲述你的故事,但是是故事的质量将你的观众与更大的意义联系起来。可视化只是这项工作的一小部分。
你的数据可视化对你的故事既有帮助也有坏处。太多的视觉效果会分散注意力,因为每次你展示一个新的图像,人们都需要时间来处理这个变化。在吸引观众时,对你展示的数据量要保守。这些书给了你很多好主意,告诉你如何用最少的混乱展示最多的数据。希望你的观众只需要花一点时间看一下图像就能理解它的内容。然后他们可以回去听更大的故事。
需要记住的最重要的一点是,数据可视化是调味品,而不是食物。一个真正有趣的故事不需要好的视觉效果。同时,再好的数据可视化也掩盖不了一个无聊的故事。
如果你是团队的研究负责人,你可以做一些事情来简化你的视觉效果,这样它们可以在不分散观众注意力的情况下增加故事的价值:
- 将你的数据分成小的、容易理解的部分。你的听众花在数据上的时间越多,他们花在听你的故事上的精力就越少。尝试这两本书中的技巧来创建轻量级可视化。两本书都描述了去除不必要信息的过程。你试图达到你需要交流有趣的东西的最低限度。当您查看可视化效果并查看数据是否仍然有意义时,请关闭文本标签。如果你选择显示大量的数据,那么最好是有一个可消化的连续流,而不是一些观众需要消化的图表。
- 明确区分呈现数据和讲故事。区分这两者的一个很好的方法是使用点击器。将遥控器握在手中,更换幻灯片和演示数据。放下遥控器,用双手讲述你的故事。这给了你的观众一个吸收数据的机会,这样他们在处理一个新的可视化时就不必听故事了。
- 请记住,数据可视化本身并不能让你走得很远。如果你想讲述一个像芝加哥这样伟大城市的故事,不要只展示一张漂亮的地铁地图。一个像地铁图这样奇妙的数据可视化,可以告诉你去哪里,但不能给你去那里的理由。讲述美食、美好的社区和密歇根湖沙滩的故事。这些东西会刺激你的观众采取行动,并可能让他们想要访问。
如果您理解可视化的局限性,您可以从额外的好处中获得价值。不要错误地认为好的视觉效果可以代替有趣的故事。
排除杂念
在讲述数据科学故事时,您很想分享大量数据。一些团队觉得这是展示他们工作的好机会。不幸的是,讲故事环节不是展示数据科学复杂性的好时机。正如你所看到的,一个好的讲故事的会议使用数据作为配角,而不是主角。这就是为什么你会从你的演讲中去掉任何不能增强故事情节的东西。当你接近完成你讲故事的内容时,你应该拿出更多的东西,放进更少的东西。
有两个主要的地方你希望尽可能的整洁。首先,正如上一节所讨论的,确保您的数据可视化尽可能的清晰。第二,确保你有足够的角色、情节和冲突来维系整个故事。去掉所有的东西,这样你就能抓住故事的精髓。
我曾经为一个组织工作过,这个组织的讲故事会议是由一个导演主持的。他首先祝贺数据科学团队取得了巨大的成果。然后他谈到公司变得更加数据驱动是多么重要。他说,这是听众中的利益相关者制定的组织战略的一大部分。
十分钟后,导演开始讲述故事的要点。不幸的是,到这个时候,很多观众已经不再关注了。一些高管看着他们的智能手机,而其他人只是茫然地盯着第一张幻灯片。这种在演示开始时添加的信息使得导演更难吸引观众。
现在想象一下,如果导演立即吸引观众。他说,“我们认为我们找到了更好地预测客户行为的方法。通过观察模式,我们可以更好地在顾客考虑购买之前判断他们会购买什么。”然后他讲述了一个典型客户的故事,甚至还用到了故事中的其他角色。通过这种方法,观众从他开始讲述故事的那一刻起就参与进来了。
记住,观众想从你的故事中带走一些东西。当你开始讲故事的时候,给他们一些有趣的东西。随着你继续给予他们更多,他们会越来越深地被你的故事所吸引。
这就是为什么你应该努力去除通常在每次会议开始时的所有组织规范。讲故事是一个特殊的场合。你的研究领导不应该把它当成一个典型的状态会议。你不必祝贺球队。你不必展示他们工作的重要性。当你给观众他们想要的东西时,他们更有可能赋予你的故事意义。
在讲故事的过程中,你不需要太多的数据可视化。当你使用它们时,试着消除任何分散注意力的信息。找出任何容易总结的详细数据。从图像中删除任何不需要的文本。当您查看数据可视化时,问问自己是否有什么可以消除的。如果你把它拿掉,会不会影响你想要传达的东西?不是每个点都需要文本标签,也不是每个系列都需要拼写出来。例如,如果您有一个显示星期一到星期五的时间序列,那么并不是每天都需要标签。
当你消除分散注意力的信息时,你在为他们做一些观众的工作。他们不需要考虑太多视觉化的东西,也不需要想你要讲什么。你可以消除你和观众之间的这些障碍。
记住少即是多。一个好的讲故事会议不像烟火表演。你不想让你的视觉、听觉和色彩漩涡让观众眼花缭乱。应该很简单,重点突出。应该有易于阅读的可视化和简单的故事情节,只有一些令人难忘的细节。
摘要
在本章中,您了解到数据科学团队应该使用故事来揭示数字背后的人性。一个很好的方法是在你讲故事的时候使用可视化。此外,您发现应该删除演示文稿中不能增强故事情节的任何内容。在第二十三章中,你会发现如何使用隐喻来缓和新的想法。
Footnotes 1
保罗·史密斯,《以故事为先导:吸引、说服和鼓舞人心的商业叙事指南》。美国管理协会 AMACOM 分部,2012 年。
2
Cole Nussbaumer Knaflic,《用数据讲故事:商业人士数据可视化指南》(John Wiley & Sons,2015)。
3
Edward R. Tufte,定量信息的视觉显示,第二版(美国:美国图形出版社,2001 年)。
二十三、使用隐喻
我们生活在一个充满隐喻的世界。我们在普通短语中看到它们。你可以“忙得像只蜜蜂”、“心碎”,也可以“安静得像只老鼠”它们在文学作品中很常见。你可能听说过“整个世界是一个舞台”或者麦克白试图探究“时间的种子”的比喻政治家在他们的演讲中使用它们。有里根总统的“美国的早晨”,奥巴马总统说经济已经“陷入困境”
你看到这么多隐喻的原因是它们有效。它们把你知道的东西和你不知道的东西联系起来,让不熟悉的东西看起来更熟悉。在他们的书《我们赖以生存的隐喻》中,作者乔治·莱考夫和马克·约翰逊认为隐喻对我们的思维方式至关重要。我们用隐喻来理解爱情、战争和合作等概念。他们写道,“那些把他们的隐喻强加于文化的人可以定义我们认为是真实的东西。”
当你讲述一个数据科学的故事时,使用隐喻作为一种方式来缓和新的想法。记住,隐喻让未知看起来熟悉,当你听到一个关于熟悉事物的故事时,你更有可能将其与某种意义联系起来。
从文学的角度来看,一个隐喻让两件事变得一样。例如,看看这个短语“连锁反应”。你想一想一条链条是如何在每一个环节相连的情况下工作的。当你想到一件事情发生时,这件事情会影响到其他几个环节。这比“自我放大事件”这样的术语更容易想象。
在讲故事时,只要把隐喻想象成任何把未知事物和已知事物联系起来的东西。这样,你就不必太担心隐喻、寓言、明喻和类比之间的细微差别。保持简单就好。如果你把两件不同的事情等同起来,就把它当成一个比喻。
数据科学涉及到很多难以理解的概念,因此已经有一些成熟的隐喻:数据仓库、数据挖掘、数据湖、技术债务和淘金,等等。这是您在描述困难的数据科学概念时想要使用的诗意语言类型。
假设您的团队正在为一家大型电影工作室工作。你想找出一种方法,使用预测分析来决定在多少个屏幕上放映一部新电影。你不想在太多的屏幕上放映这部电影,因为那样的话,电影院会有很多空座位。你也不希望在很少的屏幕上放映,因为人们可能买不到票,完全跳过这个节目。您的数据科学团队收集了结构化和非结构化数据。你有大量的结构化数据,显示人们在许多不同的网站上观看了电影预告片。你也有很多非结构化的数据,表明有很多电影的嗡嗡声。人们在 Twitter 和脸书等社交媒体网站上大量谈论这部电影。
当你的研究负责人向观众讲述数据故事时,不要说“我们的非结构化数据分析表明,人们对这部电影很感兴趣,”也许她应该说,“社交媒体网站上有很多友好的聊天,表明人们真的想看这部电影。”这样,受众就能立即知道这些数据的价值和来源。观众头脑中也有数据是如何产生的图像。
你也可以在其他方面使用隐喻。例如,“这些都是抢手货”和“电影上映几周后,我们可以期待一段冷静期。”这些隐喻使故事更有趣,更好玩,这让你的观众参与进来,并帮助他们在你的故事中找到一些意义。
当你使用隐喻时,你可能会打破你和你的观众之间的障碍。在数据科学中,使用复杂术语总是有一些危险。你总是冒着造成脱节的风险。一个比喻不仅让你的故事听起来更有趣,还降低了参与的门槛。与“非结构化数据分析”相比,您的听众中有人可能更有可能质疑“友好交谈”的价值你的观众参与得越多,他们就越有可能从故事中获得一些意义。
设定愿景
在她的书《共鸣:呈现改变观众的视觉故事》中, 2 南希·杜阿尔特讲述了创造视觉以激发变革的技巧。她谈到的技巧之一是创造对比。这是将当前环境与未来愿景分开的能力。很多时候,您可能希望使用数据科学故事来为您的组织创建新的愿景。例如,您在数据中看到一些新的东西,并希望改变方向以利用新的洞察力。您可能会在数据中发现一些东西,为组织中的新角色提供一个案例。
不管怎样,设定愿景是你在讲故事时最具挑战性的事情之一。一个对比现在和未来的故事需要极大的信任。如果他们不相信你知道路,没有人会愿意和你一起去寻找新的目标。这就是为什么你首先要做的事情之一是帮助建立自己的信誉。做到这一点的一个方法是使用参与、愿景和真实性(EVA)。如果你是电影《瓦力》的粉丝,你应该很容易记住这种方法(“Eeevva”)。当你想用对未来的新眼光来讲述一个故事时,这种技巧是非常有价值的。
你要做的第一件事就是吸引你的观众。使用我们在本书中提到的一些技巧,将它们引入你的故事中。如果你不能让你的观众相信有一个有趣的故事要讲,他们就不会有动力去做任何改变。这里有一些提示供你记住:
- 专注于一个有趣的情节,并有令人难忘的细节强有力的人物。
- 为未来建立一个清晰的愿景。帮助观众描绘出这个未来愿景的真实变化。
- 真实地传达这一愿景。如果它看起来像是推销,你的观众不会相信你的愿景符合他们的最佳利益。
创造一个有趣的情节
假设你在一家电力公司工作。您的数据科学团队想出了一种更有效地分配电力的方法。在你的讲故事环节,谈谈你目前是如何分配权力的。解释大量电能被浪费是因为它们被用在了不需要的地方。建议您可以使用数据科学来创建设备,并根据需求实时分配电力。让他们知道,您的团队可以根据非结构化和结构化数据的组合来预测您的客户将需要多少电力。他们可以分析来自国家气象局的数据,然后将这些数据与来自社交媒体的一些非结构化数据进行比较。你可以用一个普通的比喻来讲述这个故事,比如“智能能源网”你也可以引入其他公司正在尝试类似做法的案例研究,然后运用批判性思维来比较你的组织,突出关键差异。所有这些想法都有助于创造你的故事情节。你希望组织进行新的探索,所以让角色有趣,并在现在和未来之间建立一些冲突。
创造愿景
愿景是故事中影响最大的部分。创建一个未来愿景,让组织使用数据科学根据个人需求实时分配电力。谈论这将如何更加环保。例如,德克萨斯州的一个风力发电厂可能会有一个大风天,这将会给亚利桑那州的高温期提供额外的电力。
你也可以把这个系统比作一个活的有机体。使用这个比喻来谈论系统将如何适应和呼吸稳定的数据流。所有这些技巧都有助于吸引你的观众,巩固你的视野。
保持真实性
最后,你想保持你的真实性。当你尝试 EVA 方法时,你的受众需要将你视为组织内部的一员。对于顾问和组织外的人来说,很难带来你需要的那种真实性,来真正吸引你的观众并建立一个新的愿景。你需要给人留下一个关心公司并对这一追求真正感兴趣的印象。
创造未来的愿景是你将要讲述的最具挑战性的故事之一,但如果你想做出真正的改变,这是你必须要做的事情。请记住 EVA 方法是让这些故事更加成功的一种方法。
激励观众
哲学家柏拉图曾经说过,“讲故事的人统治社会。”他们这样做是因为他们激励人们倾听并做出改变。你已经看到了如何通过不同的技巧来构建一个故事,帮助吸引你的观众并传达一个意思。现在是时候把所有这些都集中起来,让你的观众行动起来了。你会想利用这种参与度,把它变成激励你的观众做出改变的东西。
有七个步骤可以引导你的听众采取行动。每一个都建立在另一个之上,并以新的行动项目结束。你希望你的听众在听完你的故事后有动力去尝试新的东西。
- 了解你的观众:找出什么能激励你的观众。如果你能确定他们的需求,你就可以修改故事来迎合他们的恐惧或欲望。
- 建立情感联系:用个人轶事和小短文在情感层面上吸引他们。
- 提供背景:如果不谈论你已经去过的地方,你就不能谈论你想去的地方。让你的听众理解为什么需要做一些新的事情。
- 让你的观众关心你的人物和情节:如果观众不关心组织或数据,他们就不会有行动的动力。
- 使用隐喻让变化看起来更熟悉:你不希望你的观众害怕采取行动。一个好的比喻能让你的观众容易接受新的或危险的东西。
- 使用清晰的对比:使用上下文来设定观众在哪里,然后使用对比来显示他们需要去哪里。这可以是一个新产品或服务,或者是一个表明组织应该停止做某事的数据故事。
- 创建一个清晰的行动号召:如果你已经很好地完成了前面的六个步骤,听众将会准备好采取一些新的行动。清楚地陈述你希望你的听众做什么不同的事情。你不希望你的观众回去做他们一直在做的事情。
想一想你可以如何用这七个步骤来讲述一个关于跑鞋网站的故事。想象一下,数据科学团队有一些强有力的证据表明,客户对在线购买鞋子犹豫不决。数据显示,一些顾客频繁退货,然后在其他地方购买鞋子。数据科学团队提出了一些有趣的问题,现在研究负责人想讲述一个她发现的故事。
她首先创建了一个虚构的客户,代表他们在数据中看到的内容。这位顾客在网上购买一切。有了网上商店,她发现在买跑鞋之前不能试穿是一件令人沮丧的事情。
因此,研究负责人讲述了一个故事,如果他们在几个较大的城市开设一些新的店面,该公司可以预计销售额会上升。数据科学团队使用其批判性思维技能来论证许多其他组织正在尝试传统店面。她创造了网站正在失去潜在客户的背景。她用“实体商店”和“云中的虚拟商店”做比喻在她的故事中,这位研究负责人说,她想从这两种类型的商店中获得最佳收益。然后,她谈到了公司创建这些店面并将顾客与这种新体验联系起来的情节。她遵循典型的“探索”情节的结构。她讲述了一个组织如何走向新的地方的故事。然后,她在当前网站和漂亮的新店面之间创建了一个非常清晰的对比。最后,她以行动号召结束了故事。她想让观众为这个新项目做一个预算。
她将这些元素结合在一起,激励观众做出改变。如果你是研究负责人,确保你的每个讲故事环节都以非常清晰和直接的行动号召结束。
摘要
在这一章中,你学会了如何通过关注有趣的情节、强有力的角色和令人难忘的细节来吸引观众。这为未来设定了一个清晰的愿景,帮助观众描绘出这个未来愿景的真实变化。你还发现了如何创造一个情节和未来的愿景。最后,你发现对你来说,保持真实并给人留下真正关心公司的印象是很重要的。在第二十四章中,你将学习如何避免讲故事的陷阱。
Footnotes 1
乔治·莱考夫和马克·约翰逊,《我们赖以生存的隐喻》(芝加哥大学出版社,2008 年)。
2
南希·杜阿尔特,《共鸣:呈现改变观众的视觉故事》(约翰·威利父子出版社,2013 年)。
3
这段引文也被认为是亚里士多德,霍皮人谚语,纳瓦霍人谚语,和美洲土著人谚语(未指明)。
二十四、避免讲故事的陷阱
讲故事的最大挑战之一是,要做到专业,你需要将数据呈现为一组原始数字。许多组织认为数据不言自明。数字的绝对力量会迫使你的观众采取行动。如果你的文化注重目标和遵从,这一点尤其正确。在这些组织中,你不需要讲述你的项目是如何在预算之内的。你不必讲述你已经完成的里程碑的数量。
当你在数据科学领域工作时,你试图传达比简单的状态报告更重要的东西。你在尝试发现新的东西。请记住,数据科学中的“科学”是关于使用科学方法探索数据。这种类型的数据很复杂,需要解释。您的读者不仅会向您的团队展示您精心设计的报告,还会帮助他们理解数据的含义。
想想你接触复杂数据的任何时候。也许你想知道天气信息,或者想知道候选人在即将到来的选举中表现如何。这两者都是复杂的数据问题,这也是为什么两者都经常不准确的原因。大多数人不会深入研究你的数据。相反,他们希望被告知一个故事。他们想听听你对这些数据的看法。给他们太多的数据不仅无益,而且可能会让人不知所措。
想象一下,你正在看一个政治节目,评论员拿出了四个条形图。他说,“如你所见,数据说明了一切。”大多数人只会换台而不看报道。数据科学也是一样。如果你的故事只是使用图表,那么你的听众会很快对你的陈述不屑一顾。一个好的数据故事使用报告作为配菜来提升大盘菜。
有几件事需要注意,以确保您不会过度依赖您的数据可视化。
- 检查您的演示文稿。如果你用幻灯片,你有多少?如果这是一个长达一小时的演示,而你有三十张幻灯片,那么你就不是在讲故事。你可能只是在展示数据。
- 检查准备数据所花费的时间。确保你的图表清晰非常重要。请记住,图表是你的观众最先忘记的事情之一。如果你想产生最大的影响,把注意力放在你的听众会记住的事情上。你的观众更容易记住一个清晰有趣的故事。
如果你的组织有非常保守的管理文化,可能很难讲故事。在这些组织中,展示图表并让经理来解释数据通常在政治上更安全。你可能想把自己描绘成一个公正的展示者。这种方法的问题是,如果你在数据科学团队中,你仍然要对结果负责。因此,无论他们认为什么是对你的数据的最佳解释,你都会受到牵连。在这些情况下,通过一个精彩的故事来表达你的观点通常是一个更好的策略。这样,至少你可以控制你的结果。
最后,新团队通常很难接受你可以从数据中创造一个故事。一些数据看起来就像没有生命的十进制数字列。对于那些团队来说,看着这些数字并对创造它们的活动进行逆向工程是一个真正的挑战。坦率地说,这是数据科学团队面临的最大挑战之一。避免这种情况的最好方法是使你的报告人性化。不要把一份报告称为“即将到来的消费趋势”相反,可以称之为“人们在买什么”这些小步骤可以让您更容易将数据视为反映真实世界的事件。
像任何技能一样,数据讲故事需要时间来提高。开始思考一个故事的关键特征,比如情节和冲突。然后努力以有趣的方式展示你的数据。随着时间的推移,你的故事会变得更加生动有趣。你甚至可以做出更强有力的结论和更大胆的解释。试着记得和你的故事和你的观众一起开心。它会改善你的故事,让你成为一个更有趣的故事讲述者。
摘要
在本章中,您了解了在讲述数据科学故事时如何避免一些常见的陷阱。一定要看看你的演示文稿,寻找你过于强调数据的警示信号。此外,要注意组织文化的挑战,这可能会使讲述有趣的故事变得更加困难。在第二十五章中,你将会看到如何将这本书的五个部分结合起来,在你的组织中做出一些真正的改变。
二十五、开始组织变革
组织变革管理是一个探索已久的领域。您已经掌握了在您的组织中开始数据科学所需的知识,但在本章中,您将学习一些其他工具,这些工具可用于帮助您的组织改变思维模式。
我在这本书的开头描述了我在 20 世纪 90 年代早期在西北大学学术计算和网络服务(ACNS)的工作。当时,办公室位于芝加哥市中心。每天早上,我从北边的红线乘高架火车到市中心的州立大街和芝加哥大街站。每次我走过这些北边的社区,我都会经过一栋有围栏的小院子的房子。栅栏后面有一只狗,每天早上我去车站的时候,它会抓我,抓我,叫我。这是我们的惯例。我和狗每天早上都分享的东西。我会走向火车,然后狗会抓啊抓啊叫。有时我甚至会看到它闪亮的棕色脑袋从栅栏顶上冒出来。
一天早上,这只狗异常兴奋。当狗把它的身体扔向嘎吱作响的木头时,栅栏板发出像扩音器一样的隆隆声。我看了一眼栅栏,然后回到我的热气腾腾的 NWU 咖啡玻璃杯。那条狗设法把它的一条腿伸过了船舷。然后,它利用这种杠杆作用在它的背上滚动,并以超强的力量翻过栅栏的一侧。带着些许失态,这只狗站了起来,似乎和我一样对它的成功感到惊讶。它带着一丝遗憾回头看了看栅栏,又看了看我。我们的目光锁定,在那一瞬间,我们意识到有些事情发生了变化。我们俩都不知道该怎么办。
当我看到组织进行重大变革时,我会想到这个故事。通常,所有的热情和努力都用在抓和抓来尝试新事物上。事实上,组织并不是这样变化的。大型组织通常不会被激情所感动。他们被对长期、实际改进的不懈追求所感动。
大多数组织无法做出大的改变有三个原因:
- 他们不理解这种变化。组织通常不理解新的数据科学思维模式的价值。关键人物对探索型和经验型组织的样子没有清晰的认识。他们不清楚旅程结束时他们的组织会是什么样子。因此,他们可能会有一些团队尝试新的数据科学思维模式。这些团队会尝试新的东西,但是他们没有一个前进的计划。没有人交流过组织变革的好处。
- 他们对自己的文化没有很好的认识。他们不知道数据科学的思维模式将如何融入他们更大的组织规范。他们还没有考虑他们的组织是否会接受这种变化。数据科学思维模式和您组织的运营方式之间可能存在很大的脱节。在实施数据科学变革之前,您需要对更大的组织文化有一个客观的认识。
- 他们没有真正的改变计划。该组织不知道他们需要采取哪些实际步骤来做出改变。他们可能理解数据科学的思维模式,并认为他们拥有正确的文化,但他们不知道如何将两者联系起来。这可能是一个巨大的挑战,因为在大多数组织中,用科学方法思考数据是一个巨大的变化。如果你不把它作为一个组织的变化,你会很快遇到不可克服的挑战。即使是受欢迎和被广泛接受的变革也不总是适合你组织的文化。广为接受的实践不一定对你的团队有效。如果你不像对待组织变革一样对待新的数据科学思维,你就真的有失败的危险。你可能会有一些创新,但是要做出持久的改变是很有挑战性的。
在本章中,你将学习不同类型的组织文化,以及如何识别你的组织文化。然后你会被介绍给一个资源,它会帮助你学会如何让你的组织克服对改变的恐惧。
理解组织文化
对于大多数组织来说,实施变革的第一步是更好地理解组织的文化。组织文化基本上是人们不假思索就去做的东西。前麻省理工学院教授 Edgar Schein 写了一本关于这个主题的很棒的书。他提出了一个更复杂的定义。他说,一个组织的文化是
“A pattern of sharing basic assumptions, which is learned by the team when solving problems, is effective enough to be considered effective and passed on to new members as the correct way to perceive, think and feel these problems.”
他的一个关键点是,组织文化根深蒂固。这些是人们不问就做的事情。它们是一个团体学习和教导新成员的假设。这使得一个组织的文化难以改变。在一个组织中,人们有一个成功的模式。当新员工被公司雇佣时,他们会被告知这些事情,并被告知这是做事的正确方式。因此,这种“文化”被视为正确的工作方式,很难改变。业务分析师和项目管理人员都接受了他们组织的文化是完成事情的方式。在这种文化中,当有人想要扭转局面时,通常会被认为是倒退和不正确的。当你谈论一种新的思维模式时,尤其如此。
这就是为什么如此多的注意力放在抓和抓,并试图做出新的改变。这种策略的唯一挑战是知道当你开始实施这些改变时该做什么。当你真的让一些人翻墙时会发生什么?在许多组织中,这种对话从未发生过。所有的努力都是为了做出改变。但是,在你做出改变后,有些人不容易接受新的心态,会发生什么呢?在你全力以赴抓之前,你需要评估一下你组织的文化。
幸运的是,有一个很好的资源可以用来识别你的组织的文化。这是一本由威廉·施耐德所著的《再造选择》。 2 他创造了四个类别来帮助你识别你的文化。每个人关注的东西都不一样(图 25-1 )。这四种类型是:
图 25-1。
Customers who live near a gym
- 控制
- 合作
- 培养
- 能力
在他的书中,他提供了一份调查问卷,你可以在你的组织中传阅。该问卷帮助您确定这些类别中哪一个最能描述您的组织。类别可能会有一些重叠。你可能是一家非常重视能力的公司,但你也可能相当重视合作。这并不是说这些类别中的每一个都会包含您的整个组织。不过,你可能会看到一种明显突出的组织文化。
每一种文化都有自己的长处和短处。一种文化可能会欣然接受新的变化,而另一种文化可能会反对甚至是最明智的变化。关键是,一旦你理解了组织的文化,你就能更容易地决定有多少数据科学思维会扩展到你的团队之外。
控制文化
先说控制文化。这种文化有非常专制的倾向。把它想象成一个狼群。这类公司倾向于保守的管理风格,非常强调等级制度。控制文化中的每个人都知道他们为谁工作,谁为他们工作。在控制文化中,非常强调合规性。个人的角色是遵守其主管的要求。这些组织的负责人传达一个愿景,然后为他们工作的每个人都负责实现这个愿景。
组织中也有人确保每个人都遵从愿景。控制文化更喜欢员工呆在他们的职能范围内。个人一般不怎么走动。控制文化中的很多权威来自于角色和头衔。董事对经理有权威,经理对监事有权威。标题传达了权威的级别。
因为对合规性的强调如此之多,控制文化中的决策制定往往会非常彻底。在最高层有一种确定性的推动力。最高管理层或董事们想知道何时做出决定。他们希望为他们工作的人“签署”这个决定。在这些组织中进行重大变革的方法是让某个高层人士,比如首席数据官(CDO)或首席信息官(CIO),来“赞助”变革。没有这个赞助者,除了你的团队之外,很难做出任何持久的改变。不幸的是,控制文化如此强调确定性,以至于很难让高层赞助者同意做出大的改变。大变革几乎天生就有风险。控制文化做出大的、有风险的改变的最常见的方式是当他们别无选择的时候。这些组织倾向于更加保守,组织中的规范有利于秩序和确定性。他们通常喜欢可预测的过程。这就是为什么许多这样的组织会倾向于在很大程度上依赖大型系统的地方进行变革。这些系统的建立是为了让每个人都知道他们的角色以及他们在更大的过程中的位置。
数据科学团队通常在控制文化中有困难,因为数据科学团队角色比控制文化中的角色更灵活。此外,根据定义,探索是不确定的。处于强势控制文化中的数据科学团队通常不容易获得数据或决策权。控制文化有利于组织中的功能区域和强大的部门壁垒。这使得这些团队中的项目经理很难突破数据孤岛。即使面临这些挑战,许多数据科学团队仍然在强大的控制文化中工作。控制文化在大型组织中非常普遍,这些组织可能拥有大量有趣的数据。在许多方面,具有强大控制文化的组织通常从运作良好的数据科学团队中受益最多。
能力文化
第二种非常常见的文化是能力文化。这种文化在软件开发组织中很普遍。典型的能力文化是这样的,一群软件开发人员创建了一个非常受欢迎的工具,而开发人员成为了事实上的管理者。这种能力文化是作为他们组织的一部分建立起来的。能力文化的领导重点是设定标准和创造任务。他们根据每个员工的能力水平分配这些任务。所以管理风格是非常任务驱动的。管理团队试图分析他们如何分配任务。这是关于谁将完成这项工作做得最好。具有强大能力文化的组织倾向于成为矩阵式组织。在矩阵组织中,一个雇员可能有几个经理。你可能有一个质量保证开发人员向质量保证经理报告,同时也向软件开发经理报告。这意味着你有很多想成为专家的员工,他们的大部分注意力将集中在专业化上。你不想成为一个太了解开发的质量保证开发人员。然后你的软件开发工程师可能会给你任务,你会很快不知所措。所以非常强调专业化。
在能力文化中,很多权力和权威来自于发展高水平的专业知识。这些组织的决策往往非常注重分析。这样的公司将一个问题分解成组件,然后将这些组件分发给不同的员工。他们将组织视为一个工程问题。通常,当工程师遇到问题时,他们会将问题分解成几个组成部分。这些组织文化通过推动大目标来管理变革。他们有一个大目标,并把它分解成任务,以便前进。他们倾向于非常专业,在这些能力文化中,有着强烈的精英意识。你可以以一个低级员工或实习生的身份进来,如果你专攻某一领域并发展出高水平的专业技能,你就可以在组织中步步高升。
拥有强大能力文化的组织也倾向于有一个非常紧张的节奏。它们并不总是最容易工作的地方。能力文化也很难接受数据科学思维模式。数据科学往往是跨学科的。你必须对统计学、数学、讲故事和编程略知一二。非常强调专门化的文化可能不容易接受这种方法。当你需要讲述一个好故事时,你不希望你的数据分析师拒绝帮忙。你也不希望你的项目经理和研究主管觉得自己没有资格问好问题。能力文化非常强调成为专家。这就是专业知识门槛高的原因。这可能是一个挑战,因为在数据科学团队中,通常是外人会给你一些最好的问题。
栽培文化
第三种文化是修养文化。这是所有四种类型中最罕见的。在这种以人为本的文化中,领导者专注于授权和帮助人们成为最优秀的员工。经理们喜欢确保每个人都开心。他们希望员工喜欢成为组织的一部分,并且非常重视员工调查。这些组织倾向于建立一个权威的轮子,以员工为中心,所有的资源围绕着他们。他们的每个经理都像车轮上的辐条。他们周围的人试图帮助员工弄清楚他们需要什么才能做到最好。
在培养文化中,非常强调表达自己。经理们关注员工的发展和成长。他们想培养每个人。领导层通常注重魅力。如果你在培养文化中是一个有魅力的人,你可以很快成为一个权威——即使你刚刚在公司从一个低级职位起步。
管理者专注于培养他人的优势。培养领导者通过团队的才能解决问题,从而在组织中上升。
在培养文化中,多面手的价值很高。你不想去敲别人的门,听到他们不能解决你的问题。
在培养文化中,你永远看不到的一件事是有人被困在这个系统中。你会发现,在培养文化中,对部门和过程的强调要少得多。此外,这些组织中的决策制定可能很困难,因为它是高度参与性和有机的。团队中的每个人都想达成共识。
千禧一代和 30 岁以下的人在这些培养文化中有成功的趋势。许多年轻的员工特别倾向于寻求共识。由年轻企业家经营的组织倾向于在这种培养文化中投入大量的价值,并且更有可能拥抱变化和适应新思想。他们认为改变是培养过程的一部分。他们有参与式会议,人们在会上谈论变革。然后,一旦他们决定改变对他们的公司有好处,他们会很快接受这种改变。在这些组织中,成长和发展是受到鼓励的,而且在这些组织中工作往往会非常有趣,因为人们可以自由地犯错误。
然而,这些培养文化的挑战是,他们往往在决策过程中行动缓慢。你可以想象,大集团要花很长时间才能做出大家都同意的决定。真正的栽培文化是罕见的。一些组织可能觉得他们有一种培养文化,但如果你仔细观察,你会发现他们并没有真正遵循许多关键的实践。许多这样的组织只是控制文化,带有一层薄薄的培养文化的外衣。
协作文化
第四种也是最后一种文化是协作文化。这几乎和栽培文化一样罕见。你真的不会在信息技术领域看到这么多,因为这不符合领导风格。这种类型的文化更多地出现在培训机构中。协作文化中的领导者往往是团队建设者和教练。他们的管理风格非常民主,但不像栽培文化那样随意。不太需要让每个人都参与进来,但你仍然有一群经理,他们紧密合作,提出有趣的想法。这就是合作的全部意义。这样的公司倾向于团队合作,而不是像你在控制文化中看到的自上而下的等级制度。他们仍然非常强调成为多面手。
合作文化和培养文化的最大区别在于,对于前者,权威来自于关系。有时你会在家族企业中看到这种情况。你越接近组织的领导,你的权威就越大。高层人员合作更加紧密。他们倾向于通过头脑风暴会议和一些实验来做决定。与控制文化或能力文化相比,他们更容易接受变化。如果组织试图接受数据科学思维,这将有所帮助。如果你有一种协作文化,你的组织接受这种改变并不困难。然而,协作文化可能会发现数据科学的一些关键组成部分相当困难。一个有效的数据科学团队必须有追求新想法和犯错误的权力。这种权威被下推到团队层面。协作文化仍然倾向于拥有高层的权威。他们只是比控制文化更民主一点。
识别您的文化
现在你已经看到了这四种不同类型的文化,你需要找出哪一种最符合你的组织(如果你还没有的话)。请记住,协作文化或培养文化更容易接受数据科学思维模式的关键组成部分。这些文化中的个人也更容易改变,因为他们在组织中已经有了成为多面手的自然倾向。
如果你有一个强大的控制文化,你的组织倾向于传统的大系统方法。这些组织倾向于创建每个人都知道自己角色的大型流程。在许多方面,这与你希望运行数据科学项目的小型、自组织团队相反。这些文化也常常难以接受科学方法的一些关键组成部分。实验和探索本来就是不可预测的。这些控制文化通常偏爱具有可预测结果的复杂过程。如果你有一个非常强大的控制文化,你可能想从几个独立的团队开始。如果这些团队成功了,你可能有机会进行一些更大的组织变革。请记住,这些文化通常最难改变。
如果您有能力文化,那么您的组织在尝试接受数据科学思维模式时可能会面临类似的挑战。许多科学方法是将事物分解成有趣的问题,因此团队可以通过这些问题寻找更大的见解。这与能力文化通常看待工作的方式大相径庭。他们把一个大问题看作是可以分解成任务的事情。这是非常分析性的,但不是经验性的。处于能力文化中的团队需要确切地知道他们将做什么来完成工作。这些组织也倾向于拥有高度专业化的团队。这个团队中的每个人都应该有自己的专长。从很多方面来说,这降低了团队的协作性。每个人都是各自领域的权威。同样,这使得接受数据科学思维更加困难。您希望您的数据科学团队能够提出有趣的问题。这些问题可能来自研究负责人,但也可能来自数据分析师甚至项目经理。团队中的每个人都被认为有能力提出有趣的问题。对于强大的能力文化来说,这可能是一个小小的变化。
做出改变
确定了自己的文化之后,你就可以开始做出改变了。关于组织变革的最好的书之一是《无畏的变革》。这本书确定了组织如何接受或拒绝变革的模式。你可以利用你所学到的关于你的文化的东西,并利用它来确定哪些模式最适合你的组织。即使在控制文化中,您有时也可以为以后的变化做好准备。这本书面向“无权的领导者”这些领导者在组织中没有任何隐性或显性的权力。因此,你不一定要成为首席执行官或董事才能尝试在你的组织中实施变革。
这本书非常适合引导你的组织改变思维模式。即使在一个强大的控制文化中,你也不一定要成为 C 套件中的主管或经理才能开始变革过程。你只需要有一个好主意,想要引入改变。这本书为变革领导者提供了 48 种模式。您可以混合和匹配这些模式,根据您组织的文化提出一个总体策略。
本书最有帮助的指南之一是组织变革的“神话”。这些误区中的一些可能会阻碍你做出改变的努力。最常见的是,“如果这是一个好主意,那么说服别人接受它就很容易了,”以及“实现一个新想法所需要的只是知识和一个有效的计划。”另一个想法是,如果有人对改变持怀疑态度,你可以超越或忽略他们。这本书为你提供了如何应对怀疑论者以及如何倾听他们的策略。你不应该忽视你的怀疑者;他们可能是对的,看到了你看不到的东西。
这本书指出的另一个神话是,你可以成为组织中的变革推动者,独自工作——仅仅是你的知识、魅力和幻灯片的力量就足以做出改变。这本书试图表明的是,你需要建立一个能帮助你做出改变的团队。如果你无能为力,你能做的最好的事情就是和一小群人达成共识,然后推动改变。
最后一个误区是,如果你让某人相信这种改变,他们会一直相信。这本书做得很好的一件事是把变化表现为一种杂耍行为,在这种行为中,你让某人相信变化是值得的,但你仍然必须不时地回到他们身边。在这种情况下,问他们是否还在船上,他们是否仍然支持改变。即使人们接受了改变,接受了这个想法,他们也可能会滑回老路。当你试图做出大的改变时,对于控制组织来说尤其如此。
无畏的改变是基于人们以不同的速度接受想法的观念。这些人自然属于几个群体中的一个:
- 天生的创新者:当这个群体看到新事物时,他们是第一个接受改变的人。你会从数据科学的角度看到这一点。你组织中的一些创新者会对使用科学方法来更好地理解你的数据非常感兴趣。
- 早期采用者:这个群体感兴趣,但他们想听到更多。他们可能认为这是一个好主意,但没有创新者那么积极。
- 早期多数:这个群体是最大的一块。他们认为这个想法很有趣,但在加入之前会等着看别人怎么说。
- 晚多数:这一组说,“好吧,如果每个人都同意,我也同意,但我真的不想成为第一个。”
- 落后者:这些人会说,“我真的很喜欢现在做事的方式,我不明白为什么我们需要改变。”
当你考虑大规模的组织变革时,人们以不同的速度接受变革的想法是有帮助的。你正试图转向数据科学的思维模式,这通常是文化的一个重大变化。这就是为什么你经常想要确保你得到早期多数人的支持。你可以利用你的创新者作为招募他们的一种方式,并试图获得足够的共识,这样你就可以推动你的敏捷转型,并获得一点动力。
另一件要记住的事情是,当你试图改变一个组织的文化时,你不仅要对人们的头脑说话,还要对他们的心灵说话。你希望能够与他们交谈,让他们对改变产生情感上的联系。这允许你激励你的创新者,鼓励你的早期采用者。你不只是想谈论生产力。谈论您的数据科学思维,以此来更好地了解您的客户。甚至可以把它作为与顾客建立情感联系的一种方式。创新者和早期采用者通常在寻找一些有趣的东西。如果你能激发他们的兴趣,他们通常会在整个组织变革过程中一直支持你。
这本书也贯穿了你不能蹂躏人民的思想。你不能忽视组织中的愤世嫉俗者和怀疑论者。通常,愤世嫉俗者和怀疑论者是对的,也有他们的优点。我经常会在一些组织中看到变革领导者试图忽视这些人,把他们视为障碍。他们会把他们斥为不愿做出重大改变的落后者。如果你忽视愤世嫉俗者和怀疑论者,你很可能会遇到更多的问题。这些人通常是第一个指出挑战的人。你应该仔细听他们说话,理解他们想说什么。试着让他们相信这种转变是可以发生的,即使他们对一些作品持怀疑态度。你的怀疑者会想要权衡你的改变带来的好处和付出的代价。
摘要
在这一章中,你已经学习了不同类型的组织文化,以及如何识别你的组织文化。然后你被介绍给一个资源,它将帮助你学习如何让你的组织克服对改变的恐惧。在下一节,我会给你一些离别的想法作为压轴戏。
压轴戏
这就是了。我们已经走到尽头了。我希望你喜欢这本关于数据科学的书,并对如何组建团队提出有趣的问题并交付真正的商业价值有更好的想法。我试图说明的一个要点是,数据科学不仅仅是一系列实践。而是要有探索和经验主义的心态。有许多关于数据科学战术方面的书籍。我在这里尝试做的与众不同。我试图证明战术的寿命比转向更大的数据科学思维模式要短得多。如果你学习 R、Python、统计学或 Hadoop,那么你将拥有一些你需要的工具,但是仅仅使用这些工具并不能让你成为一个数据科学团队。记得把重点放在数据科学的“科学”上。这种数据科学的思维方式会让你以更有趣的方式自由使用这些工具。以新的方式思考数据远比下载新的工具和软件更具挑战性。新的数据科学思维是一个真正的挑战,但这将是一种更有价值和更有成效的数据处理方式。
我希望你喜欢这本书,并乐于提出好问题,收集见解,并从你的数据中学到更多。
Footnotes 1
组织文化与领导力,第 2 卷。(约翰·威利父子公司,2010 年)。
2
威廉·e·施耐德,《再造选择:让你当前的文化发挥作用的计划》(理查德·D·欧文出版社,1994 年)。
3
《经理 3.0:千禧一代重写管理规则指南》。美国管理协会 AMACOM 分部,2013 年。
4
Linda Rising 和 Mary Lynn Manns,《无畏的变革:引入新思想的模式》(皮尔逊教育,2004 年)。
第一部分:定义数据科学
Defining Data Science
在这一部分中,我们将围绕术语“数据科学”设置四面墙你会很容易找到认同数据科学重要性的人。很难找到几个对数据科学有共同定义的人。我们将从介绍数据库和数据科学如何使用不同的数据类型开始。然后,您将看到如何对这些不同类型的数据应用统计分析。
第二部分:建立您的数据科学团队
Building Your Data Science Team
是时候组建你的数据科学团队了。在你能建立它之前,你需要了解你需要什么类型的团队成员,如何组建团队,你的团队成员将做什么样的工作,如何合作。然后,像往常一样,你应该明白如何避免你可能遇到的任何陷阱。
第三部分:实现数据科学冲刺
Delivering in Data Science Sprints
您已经了解了什么是数据科学以及如何组建您的数据科学团队。现在你将知道如何开始这项工作。数据科学需要非常独特的思维方式。您将了解公司通常是如何工作的,并将其与数据科学团队的工作方式进行比较。然后,您将了解如何使用数据科学生命周期,并在团队“冲刺”中交付真正的商业价值
第四部分:提出伟大的问题
Asking Great Questions
乔纳斯·索尔克曾经说过,“人们所认为的发现时刻,实际上是对问题的发现。”正如你在本书中学到的,数据科学最重要的部分之一是发现伟大的问题。在本书的这一部分,你会发现如何做到这一点。要提出好的问题,你必须理解批判性思维(提出批判性问题)。接下来,您将了解如何鼓励人们提出有趣的问题,以及在哪里寻找好问题。
第五部分:使用数据科学讲述故事
Storytelling with Data Science
历史学家尤瓦尔·诺亚·哈拉里(Yuval Noah Harari)在他的著作《智人:人类简史 1 中写道,我们的原始人类祖先并不是通过创造工具而成为现代人类的。相反,这是他们互相讲述复杂故事的能力。正是我们分享的故事,是从流浪的非洲猿到今天的智人的关键进化步骤。这些故事帮助我们形成了关于农业、正义和宗教的新观念。这就是为什么讲故事在我们最底层的交流中根深蒂固。当交流新的和复杂的想法时尤其如此。在这一部分,我们将谈论讲故事的基本方面。只有当您能够将数据与一些更大的想法联系起来时,您的数据科学团队的见解才能发挥作用。通常最好的方法是编织一个清晰有趣的故事。仅仅展示数据是不够的。为了让你的团队取得成功,你的利益相关者需要理解这些新想法背后的含义。一个好的故事将有助于弥合这一差距。
Footnotes 1
尤瓦尔·诺亚·哈拉里。《智人:人类简史》(兰登书屋,2014 年)。*需要页码
第六部分:总结
Finishing Up
嗯,那很有趣。我们覆盖了很多地区。首先,我们从理解数据科学的基础开始。然后你发现了如何创建数据科学团队。您还学习了如何将您的数据科学团队角色与您组织中的现有人员对应起来。然后,您看了一个新的数据科学生命周期(DSLC)框架,用于团队工作。您探索了随着时间的推移交付价值的短冲刺,这允许您调整工作以适应反馈并创建更好的见解。接下来,你学会了如何根据数据进行推理,并运用强烈的批判性思维。最后,您学习了如何讲述一个令人信服的数据科学故事。好的讲故事是你学到的东西和你能告诉别人的东西之间的桥梁。没有那座桥梁,你就不会得到有用的反馈,而这些反馈是你将团队的洞察力与真正的商业价值联系起来所需要的。
那么,下一步是什么?还有最后一个挑战。你需要了解你组织的文化,这样你才能帮助他们做出改变。