3.2 行列式的性质(第三章 行列式)

主要内容

这一节的核心内容是,将求一个矩阵的行列式的问题,转化为求该矩阵进行行变换后矩阵的行列式的问题。通过这种转化,可以非常灵活地降低求一个复杂矩阵行列式的难度。此外,还在论述过程中,顺便证明了行列式为0和矩阵可逆的关系定理。并讲解了一些围绕核心内容的推论,例如列变换定理,行列式和矩阵乘积的关系等。

行变换定理

计算某个方阵的行列式,可以转换为计算其过行变换的矩阵的行列式。有如下定理:

A A A是一个方阵
a. 若 A A A的某一行的倍数加到另一行得矩阵 B B B,则 d e t   B = d e t   A det \ B = det\ A det B=det A
b. 若 A A A的两行互换得矩阵 B B B,则 d e t   B = − d e t   A det\ B = -det\ A det B=det A
c. 若 A A A的某行乘以 k k k倍得到矩阵 B B B,则 d e t   B = k ⋅ d e t   A det\ B=k\cdot det\ A det B=kdet A

证明:

上述每项操作对应一个初等矩阵的操作,另外,通过简单的计算就可以知道如下结论:
d e t   E = 1 det \ E = 1 det E=1,若 E E E是一个行倍加
d e t   E = − 1 det \ E = -1 det E=1,若 E E E是一个交换
d e t   E = r det \ E = r det E=r,若 E E E是一个 r r r倍乘
因此,上述定理其实可以转化为如下的描述:
d e t   E A = ( d e t   E ) ( d e t   A ) det\ EA = (det\ E)(det\ A) det EA=(det E)(det A)
我们要证明的是上面的式子。
可以通过数学归纳法来证明。
对于 2 × 2 2\times 2 2×2的矩阵,很容易验证上述公式成立。
假设该定理对 k × k k \times k k×k矩阵也成立。
n = k + 1 n = k+1 n=k+1
B = E A B=EA B=EA,通过余因子展开式的方式来展开 B B B,选择在 E E E的作用下没有被改变的一行展开 B B B。如此一来,
B i j B_{ij} Bij也满足 B i j = E A i j B_{ij}=EA_{ij} Bij=EAij,其中 A i j A_{ij} Aij是按同样的方式从 A n A_n An中得到的 k k k维矩阵。
根据上述归纳法的假设,由于 B i j B_{ij} Bij A i j A_{ij} Aij均是 k k k维矩阵,因此有:
d e t   B i j = α d e t   A i j det\ B_{ij} = \alpha det\ A_{ij} det Bij=αdet Aij
α \alpha α的值对应上面的 1 , − 1 , k 1, -1, k 1,1,k
另一方面,
d e t   B = a i 1 ( − 1 ) i + 1 d e t   B i 1 + ⋯ + a i n ( − 1 ) i + n d e t   B i n = α a i 1 ( − 1 ) i + 1 d e t   A i 1 + ⋯ + α a i n ( − 1 ) i + n d e t   A i n = α d e t   A \begin{aligned} det\ B &= a_{i1}(-1)^{i+1}det\ B_{i1} + \cdots + a_{in}(-1)^{i+n}det\ B_{in}\\&=\alpha a_{i1}(-1)^{i+1}det\ A_{i1} + \cdots + \alpha a_{in}(-1)^{i+n}det\ A_{in} \\&=\alpha det\ A \end{aligned} det B=ai1(1)i+1det Bi1++ain(1)i+ndet Bin=αai1(1)i+1det Ai1++αain(1)i+ndet Ain=αdet A
由归纳法,上述定理得证。

例:

计算 d e t   A det\ A det A,其中 A = [ 1 − 4 2 − 2 8 9 − 1 7 0 ] A=\begin{bmatrix}1&-4&2\\-2&8&9\\-1&7&0\end{bmatrix} A=121487290

解:

思路是,通过行变换对原始矩阵进行化简,使行列式便于计算,再通过上述定理求解。
d e t   A = ∣ 1 − 4 2 − 2 8 − 9 − 1 7 0 ∣ = ∣ 1 − 4 2 0 0 − 5 0 3 2 ∣ det\ A=\begin{vmatrix}1&-4&2\\-2&8&-9\\-1&7&0\end{vmatrix}=\begin{vmatrix}1&-4&2\\0&0&-5\\0&3&2\end{vmatrix} det A=121487290=100403252
根据上述定理b,交换化简后的矩阵第二行和第三行,得:
d e t   A = − ∣ 1 − 4 2 0 3 2 0 0 − 5 ∣ = ( − 1 ) ( 1 ) ( 3 ) ( − 5 ) = 15 det\ A = -\begin{vmatrix}1&-4&2\\0&3&2\\0&0&-5\end{vmatrix}=(-1)(1)(3)(-5)=15 det A=100430225=(1)(1)(3)(5)=15

例:

计算 d e t   A det\ A det A,其中 A = [ 2 − 8 6 8 3 − 9 5 10 − 3 0 1 − 2 1 − 4 0 0 ] A = \begin{bmatrix}2&-8&6&8\\3&-9&5&10\\-3&0&1&-2\\1&-4&0&0\end{bmatrix} A=23318904651081020

解:

根据上述定理c,可以提取出第一行的系数:
d e t   A = 2 ∣ 1 − 4 3 4 3 − 9 5 10 − 3 0 1 − 2 1 − 4 0 6 ∣ det\ A=2\begin{vmatrix}1&-4&3&4\\3&-9&5&10\\-3&0&1&-2\\1&-4&0&6\end{vmatrix} det A=213314904351041026
接着,可以继续进行行变换,直至将矩阵化为三角阵:
d e t   A = 2 ∣ 1 − 4 3 4 − 3 − 4 − 2 0 0 − 6 2 0 0 0 1 ∣ = 2 ( 1 ) ( 3 ) ( − 6 ) ( 1 ) = − 36 det\ A=2\begin{vmatrix}1&-4&3&4\\-&3&-4&-2\\0&0&-6&2\\0&0&0&1\end{vmatrix}=2(1)(3)(-6)(1)=-36 det A=2100430034604221=2(1)(3)(6)(1)=36

行列式和矩阵可逆的关系

由上述定理,若一个方阵 A A A通过行倍加和行交换化简为阶梯形 U U U,且此过程经过了 r r r次行变换,则有:
d e t   A = ( − 1 ) r d e t   U det\ A=(-1)^r det\ U det A=(1)rdet U
另一方面,由上一节的知识可知: d e t   U det\ U det U是主对角线上的元素 u 11 , ⋯ u n n u_{11},\cdots u_{nn} u11,unn的乘积。而若 A A A可逆,那么元素 u i i u_{ii} uii都是主元(可逆矩阵定理),否则,至少有某一个位于主对角线的上的元素为0。

以上过程就证明了行列式和矩阵可逆之间的关系:

方阵 A A A是可逆的当且仅当 d e t   A ≠ 0 det\ A\neq 0 det A=0

这条定理丰富了可逆矩阵定理的内容。并且会有一些有用的推论:
推论1:

A A A的列是线性相关的,则 d e t   A = 0 det\ A = 0 det A=0

推论2:

A A A的行是线性相关的,则 d e t   A = 0 det\ A = 0 det A=0
注:这点可由矩阵定理中关于 A T A^T AT的性质来推导得到。

例:

计算 d e t   A det\ A det A A = [ 3 − 1 2 − 5 0 5 − 3 − 6 − 6 7 − 7 4 − 5 − 8 0 9 ] A=\begin{bmatrix}3&-1&2&-5\\0&5&-3&-6\\-6&7&-7&4\\-5&-8&0&9\end{bmatrix} A=3065157823705649

解:

将2倍的第一行加到第3行,得到:
d e t   A = d e t   ∣ 3 − 1 2 − 5 0 5 − 3 − 6 0 5 − 3 − 6 − 5 − 8 0 9 ∣ det\ A=det\ \begin{vmatrix}3&-1&2&-5\\0&5&-3&-6\\0&5&-3&-6\\-5&-8&0&9\end{vmatrix} det A=det 3005155823305669
可以观察到,化简后的矩阵第二行和第三行是相同的,因此是线性相关的,因此 d e t   A = 0 det\ A = 0 det A=0

在行列式的计算中,可以同时利用余因子展开式和本节讲述的行变换方法来简化计算。

例:

计算 d e t   A det\ A det A A = [ 0 1 2 − 1 2 5 − 7 3 0 3 6 2 − 2 − 5 4 − 2 ] A=\begin{bmatrix}0&1&2&-1\\2&5&-7&3\\0&3&6&2\\-2&-5&4&-2\end{bmatrix} A=0202153527641322

解:

d e t   A = ∣ 0 1 2 − 1 2 5 − 7 3 0 3 6 2 0 0 − 3 1 ∣ = − 2 ∣ 1 2 − 1 3 6 2 0 − 3 1 ∣ = − 2 ∣ 1 2 − 1 0 0 5 0 − 3 1 ∣ det\ A=\begin{vmatrix}0&1&2&-1\\2&5&-7&3\\0&3&6&2\\0&0&-3&1\end{vmatrix}=-2\begin{vmatrix}1&2&-1\\3&6&2\\0&-3&1\end{vmatrix}=-2\begin{vmatrix}1&2&-1\\0&0&5\\0&-3&1\end{vmatrix} det A=0200153027631321=2130263121=2100203151
继续进行余因子展开:
d e t   A = ( − 2 ) ( − 1 ) d e t   ∣ 0 5 − 3 1 ∣ = − 30 det\ A = (-2)(-1)det\ \begin{vmatrix}0&5\\-3&1\end{vmatrix}=-30 det A=(2)(1)det 0351=30

列变换

定理:

A A A为一个 n × n n \times n n×n矩阵,则 d e t   A T = d e t   A det\ A^T=det\ A det AT=det A

证明:

可以用数学归纳法证明。
step 1:
n = 1 n = 1 n=1时,定理显然成立。
step 2:
假设定理对 k × k k \times k k×k行列式成立,也就是说,对于 k k k维方阵 A k A_k Ak,满足 d e t   A k = d e t   A k T det\ A_k=det\ A^T_k det Ak=det AkT
step 3:
n = k + 1 n=k+1 n=k+1,如果用余因子展开的方法来求二者的行列式。对 A n A_n An,沿着第一行展开,对 A n T A_n^T AnT,沿着第一列展开。则 A n A_n An a 1 j a_{1j} a1j的余因子等于 A n T A_n^T AnT a j 1 a_{j1} aj1的余因子(这是由于每一个余因子 C i j = ( − 1 ) i + j d e t   A i j C_{ij}=(-1)^{i+j}det\ A_{ij} Cij=(1)i+jdet Aij,由 n n n降维到 k k k后,每一对余因子 A 1 j A_{1j} A1j A j 1 T A^T_{j1} Aj1T仍是互为转置矩阵,且维度为 k k k,因此满足step 2中的假设)。于是定理对 n = k + 1 n=k+1 n=k+1也成立。
结论:
得证。
因此,上文中所有针对行变换的行列式定理,对列也同样成立。

行列式与矩阵的乘积

定理:

A A A B B B均为 n × n n\times n n×n矩阵,则 d e t   A B = ( d e t   A ) ( d e t   B ) det\ AB=(det\ A)(det\ B) det AB=(det A)(det B)

证明:

A A A不可逆,则 A B AB AB不可逆,此时左右两式均为0。
A A A可逆,则由于 A A A I I I是行等价的,所以 A = E p E p − 1 ⋯ E 1 I n = E p E p − 1 ⋯ E 1 A=E_pE_{p-1}\cdots E_1I_n = E_pE_{p-1}\cdots E_1 A=EpEp1E1In=EpEp1E1因此:
∣ A B ∣ = ∣ E p ⋯ E 1 B ∣ \begin{vmatrix}AB\end{vmatrix}=\begin{vmatrix}E_p\cdots E_1B\end{vmatrix} AB=EpE1B
反复利用上面的定理 d e t   E A = ( d e t   E ) ( d e t   A ) det\ EA = (det\ E)(det\ A) det EA=(det E)(det A)展开左边的式子可知:
∣ E p ⋯ E 1 B ∣ = ∣ E p ∣ ∣ E p − 1 ⋯ E 1 B ∣ = ∣ E p ∣ ⋯ ∣ E 1 ∣ ∣ B ∣ \begin{vmatrix}E_p\cdots E_1 B\end{vmatrix}=\begin{vmatrix}E_p\end{vmatrix}\begin{vmatrix}E_{p-1}\cdots E_1B\end{vmatrix}=\begin{vmatrix}E_p\end{vmatrix}\cdots\begin{vmatrix}E_1\end{vmatrix}\begin{vmatrix}B\end{vmatrix} EpE1B=EpEp1E1B=EpE1B
继续根据 d e t   E A = ( d e t   E ) ( d e t   A ) det\ EA = (det\ E)(det\ A) det EA=(det E)(det A),得知 ∣ A ∣ = ∣ E p E p − 1 ⋯ E 1 ∣ = ∣ E p ∣ ⋯ ∣ E 1 ∣ \begin{vmatrix}A\end{vmatrix}=\begin{vmatrix}E_pE_{p-1}\cdots E_1\end{vmatrix} = \begin{vmatrix}E_p\end{vmatrix}\cdots \begin{vmatrix}E_1\end{vmatrix} A=EpEp1E1=EpE1
因此有: d e t   A B = ( d e t   A ) ( d e t   B ) det\ AB=(det\ A)(det\ B) det AB=(det A)(det B)

行列式的线性性质

A A A n × n n \times n n×n矩阵,可将 d e t   A det\ A det A看作 A A A n n n个列向量的函数。
假设 A A A n n n个列向量组成,且除了第 j j j列外,其他都是固定的向量,那么, A A A可写成:
A = [ a 1   ⋯   a j − 1   x   a j + 1   ⋯   a n ] A=[\boldsymbol a_1\ \cdots\ \boldsymbol a_{j-1}\ \boldsymbol x\ \boldsymbol a_{j+1}\ \cdots\ \boldsymbol a_n] A=[a1  aj1 x aj+1  an]
定义由 R n \mathbb R^n Rn R \mathbb R R的变换 T T T为:
T ( x ) = d e t   [ a 1   ⋯   a j − 1   x   a j + 1   ⋯   a n ] T(\boldsymbol x)=det\ [\boldsymbol a_1\ \cdots\ \boldsymbol a_{j-1}\ \boldsymbol x\ \boldsymbol a_{j+1}\ \cdots\ \boldsymbol a_n] T(x)=det [a1  aj1 x aj+1  an]
则有,
T ( c x ) = c T ( x ) T(c\boldsymbol x) = cT(\boldsymbol x) T(cx)=cT(x)
T ( u + v ) = T ( u ) + T ( v ) T(\boldsymbol u + \boldsymbol v) = T(\boldsymbol u) + T(\boldsymbol v) T(u+v)=T(u)+T(v)
根据上述定理(c. 若 A A A的某行乘以 k k k倍得到矩阵 B B B,则 d e t   B = k ⋅ d e t   A det\ B=k\cdot det\ A det B=kdet A)可以很容易得出: T ( c x ) = c T ( x ) T(c\boldsymbol x) = cT(\boldsymbol x) T(cx)=cT(x)。而 T ( u + v ) = T ( u ) + T ( v ) T(\boldsymbol u + \boldsymbol v) = T(\boldsymbol u) + T(\boldsymbol v) T(u+v)=T(u)+T(v)也可以由按第 j j j列的余因子展开式来证明。

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值