主要内容
这一节的核心内容是,将求一个矩阵的行列式的问题,转化为求该矩阵进行行变换后矩阵的行列式的问题。通过这种转化,可以非常灵活地降低求一个复杂矩阵行列式的难度。此外,还在论述过程中,顺便证明了行列式为0和矩阵可逆的关系定理。并讲解了一些围绕核心内容的推论,例如列变换定理,行列式和矩阵乘积的关系等。
行变换定理
计算某个方阵的行列式,可以转换为计算其过行变换的矩阵的行列式。有如下定理:
若 A A A是一个方阵
a. 若 A A A的某一行的倍数加到另一行得矩阵 B B B,则 d e t B = d e t A det \ B = det\ A det B=det A
b. 若 A A A的两行互换得矩阵 B B B,则 d e t B = − d e t A det\ B = -det\ A det B=−det A
c. 若 A A A的某行乘以 k k k倍得到矩阵 B B B,则 d e t B = k ⋅ d e t A det\ B=k\cdot det\ A det B=k⋅det A
证明:
上述每项操作对应一个初等矩阵的操作,另外,通过简单的计算就可以知道如下结论:
d e t E = 1 det \ E = 1 det E=1,若 E E E是一个行倍加
d e t E = − 1 det \ E = -1 det E=−1,若 E E E是一个交换
d e t E = r det \ E = r det E=r,若 E E E是一个 r r r倍乘
因此,上述定理其实可以转化为如下的描述:
d e t E A = ( d e t E ) ( d e t A ) det\ EA = (det\ E)(det\ A) det EA=(det E)(det A)
我们要证明的是上面的式子。
可以通过数学归纳法来证明。
对于 2 × 2 2\times 2 2×2的矩阵,很容易验证上述公式成立。
假设该定理对 k × k k \times k k×k矩阵也成立。
令 n = k + 1 n = k+1 n=k+1。
令 B = E A B=EA B=EA,通过余因子展开式的方式来展开 B B B,选择在 E E E的作用下没有被改变的一行展开 B B B。如此一来,
B i j B_{ij} Bij也满足 B i j = E A i j B_{ij}=EA_{ij} Bij=EAij,其中 A i j A_{ij} Aij是按同样的方式从 A n A_n An中得到的 k k k维矩阵。
根据上述归纳法的假设,由于 B i j B_{ij} Bij和 A i j A_{ij} Aij均是 k k k维矩阵,因此有:
d e t B i j = α d e t A i j det\ B_{ij} = \alpha det\ A_{ij} det Bij=αdet Aij
α \alpha α的值对应上面的 1 , − 1 , k 1, -1, k 1,−1,k。
另一方面,
d e t B = a i 1 ( − 1 ) i + 1 d e t B i 1 + ⋯ + a i n ( − 1 ) i + n d e t B i n = α a i 1 ( − 1 ) i + 1 d e t A i 1 + ⋯ + α a i n ( − 1 ) i + n d e t A i n = α d e t A \begin{aligned} det\ B &= a_{i1}(-1)^{i+1}det\ B_{i1} + \cdots + a_{in}(-1)^{i+n}det\ B_{in}\\&=\alpha a_{i1}(-1)^{i+1}det\ A_{i1} + \cdots + \alpha a_{in}(-1)^{i+n}det\ A_{in} \\&=\alpha det\ A \end{aligned} det B=ai1(−1)i+1det Bi1+⋯+ain(−1)i+ndet Bin=αai1(−1)i+1det Ai1+⋯+αain(−1)i+ndet Ain=αdet A
由归纳法,上述定理得证。
例:
计算 d e t A det\ A det A,其中 A = [ 1 − 4 2 − 2 8 9 − 1 7 0 ] A=\begin{bmatrix}1&-4&2\\-2&8&9\\-1&7&0\end{bmatrix} A=⎣⎡1−2−1−487290⎦⎤
解:
思路是,通过行变换对原始矩阵进行化简,使行列式便于计算,再通过上述定理求解。
d e t A = ∣ 1 − 4 2 − 2 8 − 9 − 1 7 0 ∣ = ∣ 1 − 4 2 0 0 − 5