PDE计算
分离变量法
推论
在傅里叶级数理论中,如果在区间 [ 0 , L ] [0,L] [0,L] 上,一个函数 f ( x ) f(x) f(x) 可以展开为一系列余弦函数的和: f ( x ) = ∑ n = 1 ∞ c n cos ( n π x ) , f(x) = \sum_{n=1}^{\infty} c_n \cos(n\pi x), f(x)=n=1∑∞cncos(nπx),那么系数 c n c_n cn 可以通过什么公式计算: c n = 2 L ∫ 0 L f ( x ) cos ( n π x L ) d x , n = 1 , 2 , 3 , … c_n = \frac{2}{L} \int_0^L f(x) \cos\left(\frac{n\pi x}{L}\right) \, dx, \quad n = 1, 2, 3, \dots cn=L2∫0Lf(x)cos(Lnπx)dx,n=1,2,3,…
利用分离变量法求解偏微分方程时,会用到的三角函数积分正交性质
分离变量法求解偏微分方程时常常涉及到三角函数的正交性质,这个性质是在一定区间上三角函数乘积的积分为零。具体来说,对于三角函数的积分正交性,我们通常关注正弦函数和余弦函数在闭区间 [ 0 , L ] [0, L] [0,L] 上的正交性。
正弦函数的正交性
对于 m , n m, n m,n 为正整数,正弦函数的正交性表述为:
∫ 0 L sin ( m π x L ) sin ( n π x L ) d x = { 0 if m ≠ n L 2 if m = n \int_0^L \sin\left(\frac{m\pi x}{L}\right) \sin\left(\frac{n\pi x}{L}\right) dx = \begin{cases} 0 & \text{if } m \neq n \\ \frac{L}{2} & \text{if } m = n \end{cases} ∫0Lsin(Lmπx)sin(Lnπx)dx={02Lif m=nif m=n
这意味着,如果 m ≠ n m \neq n m=n,两个不同频率的正弦波的乘积在区间 [ 0 , L ] [0, L] [0,L] 上的积分为零。如果 m = n m = n m=n,这个积分则等于区间长度 L L L 的一半。
余弦函数的正交性
对于 m , n m, n m,n 为非负整数,余弦函数的正交性表述为:
∫ 0 L cos ( m π x L ) cos ( n π x L ) d x = { 0 if m ≠ n L 2 if m = n and n ≠ 0 L if m = n = 0 \int_0^L \cos\left(\frac{m\pi x}{L}\right) \cos\left(\frac{n\pi x}{L}\right) dx = \begin{cases} 0 & \text{if } m \neq n \\ \frac{L}{2} & \text{if } m = n \text{ and } n \neq 0\\ L & \text{if } m = n = 0 \end{cases} ∫0Lcos(Lmπx)cos(Lnπx)dx=⎩ ⎨ ⎧02LLif m=nif m=n and n=0if m=n=0
这意味着,类似于正弦函数,不同频率的余弦波的乘积在区间 [ 0 , L ] [0, L] [0,L] 上的积分为零。如果频率相同且不为零,则积分为区间长度的一半;如果两个波都是常数项(即 m = n = 0 m = n = 0 m=n=0),积分等于区间长度。
正弦和余弦函数间的正交性
对于任意正整数 m m m 和 n n n,正弦函数和余弦函数之间的正交性为:
∫ 0 L sin ( m π x L ) cos ( n π x L ) d x = 0 \int_0^L \sin\left(\frac{m\pi x}{L}\right) \cos\left(\frac{n\pi x}{L}\right) dx = 0 ∫0Lsin(Lmπx)cos(Lnπx)dx=0
这表示正弦函数和余弦函数在同一区间上相互正交,即它们的乘积的积分始终为零。
这些正交性质在求解涉及正弦和余弦函数的偏微分方程时非常重要,尤其是在处理初始条件或者边界条件引入的系列展开时,利用正交性可以帮助我们简化问题和计算系数。
题目零
{ u t − u x x = 0 , x , t ∈ ( 0 , 1 ) , u ( x , 0 ) = sin ( π x ) , x ∈ [ 0 , 1 ] , u ( 0 , t ) = 0 , u ( 1 , t ) = 0 , t ∈ [ 0 , 1 ] \left\{ \begin{aligned} &u_{t} -u_{xx} = 0, x, t\in (0,1), \\ &u(x,0)=\sin(\pi x), x\in [0,1], \\ &u(0,t) = 0, u(1,t) = 0, t\in [0,1] \end{aligned} \right. ⎩ ⎨ ⎧ut−uxx=0,x,t∈(0,1),u(x,0)=sin(πx),x∈[0,1],u(0,t)=0,u(1,t)=0,t∈[0,1]
要使用分离变量法求解这个偏微分方程,我们可以假设解 u ( x , t ) u(x, t) u(x,t) 可以表示为 X ( x ) T ( t ) X(x)T(t) X(x)T(t) 的形式。这里 X X X 是仅与 x x x 有关的函数, T T T 是仅与 t t t 有关的函数。
步骤 1: 分离变量
将
u
(
x
,
t
)
=
X
(
x
)
T
(
t
)
u(x, t) = X(x)T(t)
u(x,t)=X(x)T(t) 代入方程
u
t
−
u
x
x
=
0
u_t - u_{xx} = 0
ut−uxx=0,得到:
T
′
(
t
)
X
(
x
)
−
X
′
′
(
x
)
T
(
t
)
=
0
T'(t)X(x) - X''(x)T(t) = 0
T′(t)X(x)−X′′(x)T(t)=0
将上式两边同时除以
X
(
x
)
T
(
t
)
X(x)T(t)
X(x)T(t),得到:
T
′
(
t
)
T
(
t
)
=
X
′
′
(
x
)
X
(
x
)
\frac{T'(t)}{T(t)} = \frac{X''(x)}{X(x)}
T(t)T′(t)=X(x)X′′(x)
由于左边只是时间的函数,右边只是空间的函数,两边必须等于一个常数。我们设这个常数为
−
λ
-\lambda
−λ,因此可以得到两个常微分方程:
T
′
(
t
)
+
λ
T
(
t
)
=
0
T'(t) + \lambda T(t) = 0
T′(t)+λT(t)=0
X
′
′
(
x
)
+
λ
X
(
x
)
=
0
X''(x) + \lambda X(x) = 0
X′′(x)+λX(x)=0
步骤 2: 边界条件与本征值问题
由于边界条件
u
(
0
,
t
)
=
0
u(0,t) = 0
u(0,t)=0 和
u
(
1
,
t
)
=
0
u(1,t) = 0
u(1,t)=0,我们有:
X
(
0
)
=
0
,
X
(
1
)
=
0
X(0) = 0, \quad X(1) = 0
X(0)=0,X(1)=0
对于
X
′
′
(
x
)
+
λ
X
(
x
)
=
0
X''(x) + \lambda X(x) = 0
X′′(x)+λX(x)=0 来说,考虑满足上述边界条件的解。假设
λ
>
0
\lambda > 0
λ>0,则本征函数
X
(
x
)
X(x)
X(x) 可以表示为:
X
(
x
)
=
A
sin
(
λ
x
)
+
B
cos
(
λ
x
)
X(x) = A \sin(\sqrt{\lambda} x) + B \cos(\sqrt{\lambda} x)
X(x)=Asin(λx)+Bcos(λx)
因为
X
(
0
)
=
0
X(0) = 0
X(0)=0 必须成立,所以
B
=
0
B = 0
B=0。剩余的条件
X
(
1
)
=
0
X(1) = 0
X(1)=0 要求:
A
sin
(
λ
)
=
0
A \sin(\sqrt{\lambda}) = 0
Asin(λ)=0
除非
A
=
0
A = 0
A=0(这会导致平凡解),我们需要:
λ
=
n
π
,
n
=
1
,
2
,
3
,
…
\sqrt{\lambda} = n\pi, \quad n = 1, 2, 3, \dots
λ=nπ,n=1,2,3,…
所以, λ = n 2 π 2 \lambda = n^2\pi^2 λ=n2π2,对应的 X n ( x ) = sin ( n π x ) X_n(x) = \sin(n\pi x) Xn(x)=sin(nπx)。
步骤 3: 时间部分
对
T
′
(
t
)
+
λ
T
(
t
)
=
0
T'(t) + \lambda T(t) = 0
T′(t)+λT(t)=0,使用
λ
=
n
2
π
2
\lambda = n^2\pi^2
λ=n2π2,我们得到:
T
′
(
t
)
+
n
2
π
2
T
(
t
)
=
0
T'(t) + n^2\pi^2 T(t) = 0
T′(t)+n2π2T(t)=0
解这个方程,得到:
T
n
(
t
)
=
C
n
e
−
n
2
π
2
t
T_n(t) = C_n e^{-n^2\pi^2 t}
Tn(t)=Cne−n2π2t
步骤 4: 构造解
因此,对于每个
n
n
n,解的形式为:
u
n
(
x
,
t
)
=
sin
(
n
π
x
)
e
−
n
2
π
2
t
u_n(x, t) = \sin(n\pi x) e^{-n^2\pi^2 t}
un(x,t)=sin(nπx)e−n2π2t
给定初始条件
u
(
x
,
0
)
=
sin
(
π
x
)
u(x,0) = \sin(\pi x)
u(x,0)=sin(πx),只有
n
=
1
n = 1
n=1 时符合条件。所以:
u
(
x
,
t
)
=
sin
(
π
x
)
e
−
π
2
t
u(x,t) = \sin(\pi x) e^{-\pi^2 t}
u(x,t)=sin(πx)e−π2t
这是这个偏微分方程的解。
附注:为什么 X n ( x ) X_n(x) Xn(x) 的常数系数 A A A 被省略了?
在使用分离变量法求解偏微分方程时,省略常数系数 A A A 的原因是在最终解的形式中,这些常数可以通过初始条件或边界条件来确定,或者可以在解的线性组合中重新调整。
解的线性性
解 u ( x , t ) u(x, t) u(x,t) 是线性偏微分方程的解,可以表达为多个特解的线性组合。每个特解形式为 u n ( x , t ) = X n ( x ) T n ( t ) u_n(x, t) = X_n(x)T_n(t) un(x,t)=Xn(x)Tn(t),其中 X n ( x ) X_n(x) Xn(x) 是本征函数, T n ( t ) T_n(t) Tn(t) 是时间部分的解。因为方程是线性的,我们可以任意缩放 X n X_n Xn 和 T n T_n Tn 而不改变方程的有效性。
本征函数的正规化
在分离变量法中,通常将本征函数
X
n
(
x
)
X_n(x)
Xn(x) 正规化,使其满足一定的正交性和单位范数条件。在实际操作中,这意味着我们通常将
X
n
(
x
)
X_n(x)
Xn(x) 的范数调整为1,或者调整为方便计算的其他值。例如,对于方程:
X
′
′
(
x
)
+
λ
X
(
x
)
=
0
X''(x) + \lambda X(x) = 0
X′′(x)+λX(x)=0
带有边界条件
X
(
0
)
=
0
X(0) = 0
X(0)=0 和
X
(
1
)
=
0
X(1) = 0
X(1)=0,我们可以选择
X
n
(
x
)
=
sin
(
n
π
x
)
X_n(x) = \sin(n\pi x)
Xn(x)=sin(nπx) 作为本征函数,而忽略任何乘法常数,因为我们可以通过其他方式(如初始条件)来调整这些系数。
初始条件的调整
最终解通常需要满足特定的初始或边界条件。在您的例子中,初始条件是 u ( x , 0 ) = sin ( π x ) u(x,0) = \sin(\pi x) u(x,0)=sin(πx),这直接指出了在 t = 0 t = 0 t=0 时解的形式必须精确地是 sin ( π x ) \sin(\pi x) sin(πx) 的倍数。由于方程的线性组合特性,最终解可以简单表示为 sin ( π x ) e − π 2 t \sin(\pi x) e^{-\pi^2 t} sin(πx)e−π2t,其中 e − π 2 t e^{-\pi^2 t} e−π2t 精确地给出了时间衰减,而无需任何额外的缩放系数。
因此,省略常数 A A A 是为了简化问题,因为这个系数在将解应用于具体初始条件或通过正交性求解时自然地得到调整。这样的处理使得问题表述更为直接和清晰。
题目一
{ u x x + u y y = 0 , x , y ∈ ( 0 , 1 ) , u ( x , 0 ) = 0 , u ( x , 1 ) = sin ( π x ) , x ∈ [ 0 , 1 ] , u ( 0 , y ) = 0 , u ( 1 , y ) = 0 , y ∈ [ 0 , 1 ] \left\{ \begin{aligned} &u_{xx} +u_{yy} = 0, x, y\in (0,1), \\ &u(x,0)=0, u(x,1) = \sin(\pi x), x\in [0,1], \\ &u(0,y) = 0, u(1,y) = 0, y\in [0,1] \end{aligned} \right. ⎩ ⎨ ⎧uxx+uyy=0,x,y∈(0,1),u(x,0)=0,u(x,1)=sin(πx),x∈[0,1],u(0,y)=0,u(1,y)=0,y∈[0,1]
首先要知道这个推论:
在傅里叶级数理论中,如果在区间 [ 0 , L ] [0,L] [0,L] 上,一个函数 f ( x ) f(x) f(x) 可以展开为一系列正弦函数的和: f ( x ) = ∑ n = 1 ∞ c n sin ( n π x ) , f(x) = \sum_{n=1}^{\infty} c_n \sin(n\pi x), f(x)=n=1∑∞cnsin(nπx),那么系数 c n c_n cn 可以通过下面的公式计算: c n = 2 L ∫ 0 L f ( x ) sin ( n π x L ) d x , c_n = \frac{2}{L}\int_{0}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) \, dx, cn=L2∫0Lf(x)sin(Lnπx)dx,使用分离变量法求解这个二维泊松方程。首先,假设解 u ( x , y ) u(x,y) u(x,y) 可以表示为两个单变量函数的乘积,
即 u ( x , y ) = X ( x ) Y ( y ) u(x,y) = X(x)Y(y) u(x,y)=X(x)Y(y)。将这个假设代入原方程中,得到: X ′ ′ ( x ) Y ( y ) + X ( x ) Y ′ ′ ( y ) = 0. X''(x)Y(y) + X(x)Y''(y) = 0. X′′(x)Y(y)+X(x)Y′′(y)=0.两边同时除以 X ( x ) Y ( y ) X(x)Y(y) X(x)Y(y),得到: X ′ ′ ( x ) X ( x ) + Y ′ ′ ( y ) Y ( y ) = 0. \frac{X''(x)}{X(x)} + \frac{Y''(y)}{Y(y)} = 0. X(x)X′′(x)+Y(y)Y′′(y)=0.由于等式左边的第一项只依赖于 x x x,第二项只依赖于 y y y,为了使等式对于任意的 x x x 和 y y y 都成立,这两项必须分别等于一个常数,且这两个常数之和为零。
我们设 X ′ ′ ( x ) X ( x ) = − λ \frac{X''(x)}{X(x)} = -\lambda X(x)X′′(x)=−λ,则 Y ′ ′ ( y ) Y ( y ) = λ \frac{Y''(y)}{Y(y)} = \lambda Y(y)Y′′(y)=λ,其中 λ \lambda λ 是一个待定的常数。
因此,得到了两个常微分方程: X ′ ′ ( x ) + λ X ( x ) = 0 , Y ′ ′ ( y ) − λ Y ( y ) = 0. \begin{aligned} X''(x) + \lambda X(x) &= 0, \\ Y''(y) - \lambda Y(y) &= 0. \end{aligned} X′′(x)+λX(x)Y′′(y)−λY(y)=0,=0.接下来,我们需要考虑边界条件。根据题目给定的边界条件,我们有: X ( 0 ) = 0 , X ( 1 ) = 0 , Y ( 0 ) = 0 , Y ( 1 ) = sin ( π x ) . \begin{aligned} &X(0) = 0, \quad X(1) = 0, \\ &Y(0) = 0, \quad Y(1) = \sin(\pi x). \end{aligned} X(0)=0,X(1)=0,Y(0)=0,Y(1)=sin(πx).对于 X ( x ) X(x) X(x) 的方程,边界条件为 X ( 0 ) = 0 X(0) = 0 X(0)=0 和 X ( 1 ) = 0 X(1) = 0 X(1)=0 。
这是一个 Sturm-Liouville \text{Sturm-Liouville} Sturm-Liouville 问题,其特征值 λ \lambda λ 和相应的特征函数 X ( x ) X(x) X(x) 可以通过求解这个常微分方程得到。
可求出特征值 λ n = n 2 π 2 \lambda_n = n^2\pi^2 λn=n2π2
对应的特征函数 X n ( x ) = sin ( n π x ) X_n(x) = \sin(n\pi x) Xn(x)=sin(nπx) ,其中 n n n 为正整数。
对于 Y ( y ) Y(y) Y(y) 的方程,由于边界条件 Y ( 0 ) = 0 Y(0) = 0 Y(0)=0 和 Y ( 1 ) = sin ( π x ) Y(1) = \sin(\pi x) Y(1)=sin(πx) 不是齐次的,
需要先求解齐次方程 Y ′ ′ ( y ) − λ Y ( y ) = 0 Y''(y) - \lambda Y(y) = 0 Y′′(y)−λY(y)=0 的通解,然后通过特定的边界条件确定特解。
齐次方程的通解为 Y ( y ) = A cosh ( λ y ) + B sinh ( λ y ) Y(y) = A\cosh(\sqrt{\lambda}y) + B\sinh(\sqrt{\lambda}y) Y(y)=Acosh(λy)+Bsinh(λy)由于 Y ( 0 ) = 0 Y(0) = 0 Y(0)=0,得到 A = 0 A = 0 A=0 。因此, Y ( y ) = B sinh ( λ y ) Y(y) = B\sinh(\sqrt{\lambda}y) Y(y)=Bsinh(λy)。
最后,需要使用 Y ( 1 ) = sin ( π x ) Y(1) = \sin(\pi x) Y(1)=sin(πx) 这个边界条件来确定 B B B 的值,
但这里存在一个问题,即 Y ( y ) Y(y) Y(y) 的表达式中不包含 x x x,而边界条件中却有 x x x 的项。
这意味着我们无法直接从这个边界条件中得到 B B B 的值。
综上所述,可以得到一系列的解 u n ( x , y ) = sin ( n π x ) B n sinh ( n π y ) u_n(x,y) = \sin(n\pi x)B_n\sinh(n\pi y) un(x,y)=sin(nπx)Bnsinh(nπy)其中 B n B_n Bn 是待定常数。由于偏微分方程是线性的,可以将这些解线性叠加起来,得到最终解: u ( x , y ) = ∑ n = 1 ∞ sin ( n π x ) B n sinh ( n π y ) . u(x,y) = \sum_{n=1}^{\infty} \sin(n\pi x) B_n\sinh(n\pi y). u(x,y)=n=1∑∞sin(nπx)Bnsinh(nπy).最后,需要使用边界条件 u ( x , 1 ) = sin ( π x ) u(x,1) = \sin(\pi x) u(x,1)=sin(πx) 来确定系数 B n B_n Bn ,
将 y = 1 y=1 y=1 代入上式得到: sin ( π x ) = ∑ n = 1 ∞ sin ( n π x ) B n sinh ( n π ) . \sin(\pi x) = \sum_{n=1}^{\infty} \sin(n\pi x)B_n\sinh(n\pi). sin(πx)=n=1∑∞sin(nπx)Bnsinh(nπ).这是一个关于 sin ( n π x ) \sin(n\pi x) sin(nπx) 的傅里叶级数展开。通过比较两边的系数,可以得到 B n B_n Bn 的值 (此时 L = 1 L=1 L=1): B n sinh ( n π ) = 2 ∫ 0 1 sin ( π x ) sin ( n π x ) d x B_n\sinh(n\pi) =2\int_{0}^{1} \sin(\pi x) \sin(n\pi x)dx Bnsinh(nπ)=2∫01sin(πx)sin(nπx)dx B n = 2 sinh ( n π ) ∫ 0 1 sin ( π x ) sin ( n π x ) d x = { 2 e π − e − π , n = 1 , 0 n ≠ 1 B_n=\frac{2}{\sinh(n\pi)}\int_{0}^{1} \sin(\pi x) \sin(n\pi x) \, dx=\left\{\begin{aligned} &\frac{2}{e^{\pi}-e^{-\pi}},\quad n=1,\\ & 0\quad \quad \quad \quad \quad n\neq 1 \end{aligned}\right. Bn=sinh(nπ)2∫01sin(πx)sin(nπx)dx=⎩ ⎨ ⎧eπ−e−π2,n=1,0n=1
既然求出了
B
n
B_n
Bn,此时将
B
n
B_n
Bn 带入最终解
u
(
x
,
y
)
=
∑
n
=
1
∞
sin
(
n
π
x
)
B
n
sinh
(
n
π
y
)
.
u(x,y) = \sum_{n=1}^{\infty} \sin(n\pi x) B_n\sinh(n\pi y).
u(x,y)=n=1∑∞sin(nπx)Bnsinh(nπy).得到
u
(
x
,
y
)
=
sin
(
π
x
)
⋅
2
e
π
−
e
−
π
⋅
sinh
(
π
y
)
u(x,y)=\sin(\pi x)\cdot \frac{2}{e^{\pi}-e^{-\pi}}\cdot\sinh(\pi y)
u(x,y)=sin(πx)⋅eπ−e−π2⋅sinh(πy)
=
sin
(
π
x
)
⋅
2
e
π
−
e
−
π
⋅
e
π
y
−
e
−
π
y
2
=\sin(\pi x)\cdot \frac{2}{e^{\pi}-e^{-\pi}}\cdot\frac{e^{\pi y}-e^{-\pi y}}{2}
=sin(πx)⋅eπ−e−π2⋅2eπy−e−πy
=
sin
(
π
x
)
⋅
e
π
y
−
e
−
π
y
e
π
−
e
−
π
=\sin(\pi x)\cdot\frac{e^{\pi y}-e^{-\pi y}}{e^{\pi}-e^{-\pi}}
=sin(πx)⋅eπ−e−πeπy−e−πy
B
n
B_n
Bn 是怎么来的?
在求解偏微分方程的过程中,我们已经得到了一个包含未知系数 B n B_n Bn 的级数解:
u ( x , y ) = ∑ n = 1 ∞ B n sin ( n π x ) sinh ( n π y ) . u(x,y) = \sum_{n=1}^{\infty} B_n \sin(n\pi x)\sinh(n\pi y). u(x,y)=n=1∑∞Bnsin(nπx)sinh(nπy).
为了确定系数 B n B_n Bn,我们需要使用边界条件 u ( x , 1 ) = sin ( π x ) u(x,1) = \sin(\pi x) u(x,1)=sin(πx)。将 y = 1 y=1 y=1 代入上述级数解中,我们得到:
sin ( π x ) = ∑ n = 1 ∞ B n sin ( n π x ) sinh ( n π ) . \sin(\pi x) = \sum_{n=1}^{\infty} B_n \sin(n\pi x)\sinh(n\pi). sin(πx)=n=1∑∞Bnsin(nπx)sinh(nπ).
这是一个关于函数 sin ( π x ) \sin(\pi x) sin(πx) 的傅里叶级数展开。在傅里叶级数理论中,如果一个函数 f ( x ) f(x) f(x) 可以展开为一系列正弦函数的和:
f ( x ) = ∑ n = 1 ∞ c n sin ( n π x ) , f(x) = \sum_{n=1}^{\infty} c_n \sin(n\pi x), f(x)=n=1∑∞cnsin(nπx),
那么系数 c n c_n cn 可以通过下面的公式计算:
c n = 2 L ∫ 0 L f ( x ) sin ( n π x L ) d x , c_n = \frac{2}{L}\int_{0}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) \, dx, cn=L2∫0Lf(x)sin(Lnπx)dx,
其中 L L L 是区间的长度。在我们的例子中, L = 1 L=1 L=1,所以我们有:
B n sinh ( n π ) = 2 1 ∫ 0 1 sin ( π x ) sin ( n π x ) d x . B_n \sinh(n\pi) = \frac{2}{1}\int_{0}^{1} \sin(\pi x) \sin(n\pi x) \, dx. Bnsinh(nπ)=12∫01sin(πx)sin(nπx)dx.
因此,系数 B n B_n Bn 可以通过以下公式计算:
B n = 2 sinh ( n π ) ∫ 0 1 sin ( π x ) sin ( n π x ) d x . B_n = \frac{2}{\sinh(n\pi)}\int_{0}^{1} \sin(\pi x) \sin(n\pi x) \, dx. Bn=sinh(nπ)2∫01sin(πx)sin(nπx)dx.
这就是我们如何得出 B n B_n Bn 的表达式的详细过程。通过计算这个积分,我们可以得到所有的 B n B_n Bn 的值,从而完全确定解 u ( x , y ) u(x,y) u(x,y)。
那么定积分
∫
0
1
sin
(
π
x
)
sin
(
n
π
x
)
d
x
.
\int_{0}^{1} \sin(\pi x) \sin(n\pi x) \, dx.
∫01sin(πx)sin(nπx)dx.在
n
=
1
n=1
n=1 和
n
≥
2
n\geq 2
n≥2 时的取值分别是多少?
为了计算这个积分,我们需要考虑两种情况: n = 1 n=1 n=1 和 n ≥ 2 n \geq 2 n≥2。
当 n = 1 n=1 n=1 时:
积分变为
∫
0
1
sin
(
π
x
)
sin
(
π
x
)
d
x
=
∫
0
1
sin
2
(
π
x
)
d
x
.
\int_{0}^{1} \sin(\pi x) \sin(\pi x) \, dx = \int_{0}^{1} \sin^2(\pi x) \, dx.
∫01sin(πx)sin(πx)dx=∫01sin2(πx)dx.
使用三角恒等式 sin 2 ( π x ) = 1 2 − 1 2 cos ( 2 π x ) \sin^2(\pi x) = \frac{1}{2} - \frac{1}{2}\cos(2\pi x) sin2(πx)=21−21cos(2πx),我们可以将积分简化为
∫ 0 1 sin 2 ( π x ) d x = ∫ 0 1 ( 1 2 − 1 2 cos ( 2 π x ) ) d x = 1 2 x − 1 4 π sin ( 2 π x ) ∣ 0 1 = 1 2 . \int_{0}^{1} \sin^2(\pi x) \, dx = \int_{0}^{1} \left(\frac{1}{2} - \frac{1}{2}\cos(2\pi x)\right) \, dx = \frac{1}{2}x - \frac{1}{4\pi}\sin(2\pi x)\Big|_{0}^{1} = \frac{1}{2}. ∫01sin2(πx)dx=∫01(21−21cos(2πx))dx=21x−4π1sin(2πx) 01=21.
因此,当 n = 1 n=1 n=1 时,积分的值为 1 2 \frac{1}{2} 21。
当 n ≥ 2 n \geq 2 n≥2 时:
使用三角恒等式 sin ( a ) sin ( b ) = 1 2 [ cos ( a − b ) − cos ( a + b ) ] \sin(a)\sin(b) = \frac{1}{2}[\cos(a-b) - \cos(a+b)] sin(a)sin(b)=21[cos(a−b)−cos(a+b)],我们可以将积分重写为
∫ 0 1 sin ( π x ) sin ( n π x ) d x = 1 2 ∫ 0 1 [ cos ( ( n − 1 ) π x ) − cos ( ( n + 1 ) π x ) ] d x . \int_{0}^{1} \sin(\pi x) \sin(n\pi x) \, dx = \frac{1}{2}\int_{0}^{1} [\cos((n-1)\pi x) - \cos((n+1)\pi x)] \, dx. ∫01sin(πx)sin(nπx)dx=21∫01[cos((n−1)πx)−cos((n+1)πx)]dx.
由于 ∫ 0 1 cos ( m π x ) d x = 1 m π sin ( m π x ) ∣ 0 1 = 0 \int_{0}^{1} \cos(m\pi x) \, dx = \frac{1}{m\pi}\sin(m\pi x)\Big|_{0}^{1} = 0 ∫01cos(mπx)dx=mπ1sin(mπx) 01=0 对于任何非零整数 m m m 都成立,我们得到
∫ 0 1 sin ( π x ) sin ( n π x ) d x = 1 2 [ 0 − 0 ] = 0. \int_{0}^{1} \sin(\pi x) \sin(n\pi x) \, dx = \frac{1}{2}[0 - 0] = 0. ∫01sin(πx)sin(nπx)dx=21[0−0]=0.
因此,当 n ≥ 2 n \geq 2 n≥2 时,积分的值为 0 0 0。
题目二
{ u t − u x x + u = 0 , x ∈ ( 0 , 1 ) , t > 0 u ( x , 0 ) = x , x ∈ [ 0 , 1 ] , u ( 0 , t ) = 0 , u x ( 1 , t ) = 0 , t ≥ 0 \left\{ \begin{aligned} &u_{t} -u_{xx} + u = 0, x\in (0,1), t>0 \\ &u(x,0)=x, x\in [0,1], \\ &u(0,t) = 0, u_{x}(1,t) = 0, t\geq 0 \end{aligned} \right. ⎩ ⎨ ⎧ut−uxx+u=0,x∈(0,1),t>0u(x,0)=x,x∈[0,1],u(0,t)=0,ux(1,t)=0,t≥0
首先,假设解可以写成空间部分和时间部分的乘积,即 u ( x , t ) = X ( x ) T ( t ) u(x, t) = X(x)T(t) u(x,t)=X(x)T(t)。
代入原方程,得到
X
(
x
)
T
′
(
t
)
−
X
′
′
(
x
)
T
(
t
)
+
X
(
x
)
T
(
t
)
=
0.
X(x)T'(t) - X''(x)T(t) + X(x)T(t) = 0.
X(x)T′(t)−X′′(x)T(t)+X(x)T(t)=0.
接下来,我们可以将方程两边同时除以 X ( x ) T ( t ) X(x)T(t) X(x)T(t)(假设 X ( x ) X(x) X(x)和 T ( t ) T(t) T(t)都不为零),得到
T ′ ( t ) T ( t ) − X ′ ′ ( x ) X ( x ) + 1 = 0. \frac{T'(t)}{T(t)} - \frac{X''(x)}{X(x)} + 1 = 0. T(t)T′(t)−X(x)X′′(x)+1=0.
由于左边的第一项只依赖于 t t t,第二项只依赖于 x x x,因此它们都必须等于同一个常数,设为 − λ -\lambda −λ。
因此,我们得到了两个常微分方程:
X
′
′
(
x
)
X
(
x
)
=
−
λ
,
T
′
(
t
)
T
(
t
)
=
−
(
λ
+
1
)
.
\frac{X''(x)}{X(x)} = -\lambda, \quad \frac{T'(t)}{T(t)} = -(\lambda + 1).
X(x)X′′(x)=−λ,T(t)T′(t)=−(λ+1).
对于空间方程 X ′ ′ ( x ) X ( x ) = − λ \frac{X''(x)}{X(x)} = -\lambda X(x)X′′(x)=−λ考虑边界条件 u ( 0 , t ) = 0 u(0,t) = 0 u(0,t)=0 和 u x ( 1 , t ) = 0 u_x(1,t) = 0 ux(1,t)=0,
这意味着 X ( 0 ) = 0 X(0) = 0 X(0)=0 和 X ′ ( 1 ) = 0 X'(1) = 0 X′(1)=0。
假设解的形式为 X ( x ) = A sin ( λ x ) + B cos ( λ x ) X(x) = A\sin(\sqrt{\lambda}x) + B\cos(\sqrt{\lambda}x) X(x)=Asin(λx)+Bcos(λx)
由于 X ( 0 ) = 0 X(0) = 0 X(0)=0,我们得到 B = 0 B = 0 B=0。因此, X ( x ) = A sin ( λ x ) X(x) = A\sin(\sqrt{\lambda}x) X(x)=Asin(λx)。
由于 X ′ ( 1 ) = 0 X'(1) = 0 X′(1)=0,我们得到 λ cos ( λ ) = 0 \sqrt{\lambda}\cos(\sqrt{\lambda}) = 0 λcos(λ)=0。
由于 cos ( λ ) = 0 \cos(\sqrt{\lambda}) = 0 cos(λ)=0,我们可以取 λ = ( 2 n + 1 ) π 2 \sqrt{\lambda} = \frac{(2n+1)\pi}{2} λ=2(2n+1)π,其中 n n n 是非负整数。
因此, λ = ( 2 n + 1 ) 2 π 2 4 \lambda = \frac{(2n+1)^2\pi^2}{4} λ=4(2n+1)2π2。
对于时间方程 T ′ ( t ) T ( t ) = − ( λ + 1 ) \frac{T'(t)}{T(t)} = -(\lambda + 1) T(t)T′(t)=−(λ+1),
我们可以直接求解得到 T ( t ) = C e − ( λ + 1 ) t T(t) = Ce^{-(\lambda + 1)t} T(t)=Ce−(λ+1)t,其中 C C C 是常数。
综合起来,解的形式为
u
(
x
,
t
)
=
∑
n
=
0
∞
A
n
sin
(
(
2
n
+
1
)
π
x
2
)
e
−
(
(
2
n
+
1
)
2
π
2
4
+
1
)
t
.
u(x, t) = \displaystyle\sum_{n=0}^{\infty} A_n \sin\left(\frac{(2n+1)\pi x}{2}\right)e^{-\left(\frac{(2n+1)^2\pi^2}{4} + 1\right)t}.
u(x,t)=n=0∑∞Ansin(2(2n+1)πx)e−(4(2n+1)2π2+1)t.
最后,我们需要使用初始条件 u ( x , 0 ) = x u(x,0) = x u(x,0)=x 来确定系数 A n A_n An。
把 t = 0 t=0 t=0 代入到 u ( x , t ) = ∑ n = 0 ∞ A n sin ( ( 2 n + 1 ) π x 2 ) e − ( ( 2 n + 1 ) 2 π 2 4 + 1 ) t . u(x, t) = \displaystyle\sum_{n=0}^{\infty} A_n \sin\left(\frac{(2n+1)\pi x}{2}\right)e^{-\left(\frac{(2n+1)^2\pi^2}{4} + 1\right)t}. u(x,t)=n=0∑∞Ansin(2(2n+1)πx)e−(4(2n+1)2π2+1)t. 得到: u ( x , 0 ) = ∑ n = 0 ∞ A n sin ( ( 2 n + 1 ) π x 2 ) = x = u ( x , 0 ) u(x,0)=\sum_{n=0}^{\infty} A_n \sin\left(\frac{(2n+1)\pi x}{2}\right)=x=u(x,0) u(x,0)=n=0∑∞Ansin(2(2n+1)πx)=x=u(x,0)
系数 A n A_n An 可以通过傅里叶正弦级数展开来实现。对于 x ∈ [ 0 , 1 ] x \in [0,1] x∈[0,1],我们有
x
=
∑
n
=
0
∞
A
n
sin
(
(
2
n
+
1
)
π
x
2
)
,
x = \sum_{n=0}^{\infty} A_n \sin\left(\frac{(2n+1)\pi x}{2}\right),
x=n=0∑∞Ansin(2(2n+1)πx),
其中
A
n
=
2
∫
0
1
x
sin
(
(
2
n
+
1
)
π
x
2
)
d
x
.
A_n = 2\int_0^1 x \sin\left(\frac{(2n+1)\pi x}{2}\right) \, dx.
An=2∫01xsin(2(2n+1)πx)dx.
这个积分可以通过分部积分来计算
要解释为什么
A
n
=
2
∫
0
1
x
sin
(
(
2
n
+
1
)
π
x
2
)
d
x
,
A_n = 2\int_0^1 x \sin\left(\frac{(2n+1)\pi x}{2}\right) \, dx,
An=2∫01xsin(2(2n+1)πx)dx,
我们需要理解傅里叶级数的基本概念。
对于一个定义在区间
[
0
,
1
]
[0,1]
[0,1] 上的函数
f
(
x
)
f(x)
f(x),如果它满足一定的条件(比如是分段连续的),那么它可以用傅里叶级数表示为:
f
(
x
)
=
∑
n
=
0
∞
b
n
sin
(
(
2
n
+
1
)
π
x
2
)
,
f(x) = \sum_{n=0}^{\infty} b_n \sin\left(\frac{(2n+1)\pi x}{2}\right),
f(x)=n=0∑∞bnsin(2(2n+1)πx),
其中系数
b
n
b_n
bn 由下式给出:
b
n
=
2
∫
0
1
f
(
x
)
sin
(
(
2
n
+
1
)
π
x
2
)
d
x
.
b_n = 2\int_0^1 f(x) \sin\left(\frac{(2n+1)\pi x}{2}\right) \, dx.
bn=2∫01f(x)sin(2(2n+1)πx)dx.
这是因为正弦函数
sin
(
(
2
n
+
1
)
π
x
2
)
\sin\left(\frac{(2n+1)\pi x}{2}\right)
sin(2(2n+1)πx) 在区间
[
0
,
1
]
[0,1]
[0,1] 上形成了一组正交基。这意味着不同的正弦函数在该区间上的积分为零:
∫
0
1
sin
(
(
2
m
+
1
)
π
x
2
)
sin
(
(
2
n
+
1
)
π
x
2
)
d
x
=
0
,
如果
m
≠
n
.
\int_0^1 \sin\left(\frac{(2m+1)\pi x}{2}\right)\sin\left(\frac{(2n+1)\pi x}{2}\right) \, dx = 0, \text{ 如果 } m \neq n.
∫01sin(2(2m+1)πx)sin(2(2n+1)πx)dx=0, 如果 m=n.
正交性使得我们可以通过乘以 sin ( ( 2 n + 1 ) π x 2 ) \sin\left(\frac{(2n+1)\pi x}{2}\right) sin(2(2n+1)πx) 并在区间 [ 0 , 1 ] [0,1] [0,1] 上积分
来提取出 f ( x ) f(x) f(x)的傅里叶系数 b n b_n bn。
在我们的情况下,我们有
f
(
x
)
=
x
f(x) = x
f(x)=x,因此
b
n
=
2
∫
0
1
x
sin
(
(
2
n
+
1
)
π
x
2
)
d
x
.
b_n = 2\int_0^1 x \sin\left(\frac{(2n+1)\pi x}{2}\right) \, dx.
bn=2∫01xsin(2(2n+1)πx)dx.
这就是为什么我们有
A n = 2 ∫ 0 1 x sin ( ( 2 n + 1 ) π x 2 ) d x . A_n = 2\int_0^1 x \sin\left(\frac{(2n+1)\pi x}{2}\right) \, dx. An=2∫01xsin(2(2n+1)πx)dx.
因此,我们可以得到系数 A n A_n An 的表达式,并最终确定解 u ( x , t ) u(x,t) u(x,t)
要求解 A n = 2 ∫ 0 1 x sin ( ( 2 n + 1 ) π x 2 ) d x A_n= 2\int_0^1 x \sin\left(\frac{(2n+1)\pi x}{2}\right) \, dx An=2∫01xsin(2(2n+1)πx)dx 积分,我们可以使用分部积分法。设
u = x , d v = sin ( ( 2 n + 1 ) π 2 x ) d x u = x, \quad dv = \sin\left(\frac{(2n+1)\pi}{2}x\right)dx u=x,dv=sin(2(2n+1)πx)dx
那么
d u = d x , v = − 2 ( 2 n + 1 ) π cos ( ( 2 n + 1 ) π 2 x ) du = dx, \quad v = -\frac{2}{(2n+1)\pi}\cos\left(\frac{(2n+1)\pi}{2}x\right) du=dx,v=−(2n+1)π2cos(2(2n+1)πx)
因此,根据分部积分公式 ∫ u d v = u v − ∫ v d u \int u\,dv = uv - \int v\,du ∫udv=uv−∫vdu,我们有
A n = 2 ∫ 0 1 x sin ( ( 2 n + 1 ) π 2 x ) d x A_n = 2\int_{0}^{1} x \sin\left(\frac{(2n+1)\pi}{2}x\right) dx An=2∫01xsin(2(2n+1)πx)dx
= 2 [ − 2 ( 2 n + 1 ) π x cos ( ( 2 n + 1 ) π 2 x ) ] 0 1 + 4 ( 2 n + 1 ) π ∫ 0 1 cos ( ( 2 n + 1 ) π 2 x ) d x = 2\left[-\frac{2}{(2n+1)\pi}x\cos\left(\frac{(2n+1)\pi}{2}x\right)\right]_{0}^{1} + \frac{4}{(2n+1)\pi}\int_{0}^{1} \cos\left(\frac{(2n+1)\pi}{2}x\right) dx =2[−(2n+1)π2xcos(2(2n+1)πx)]01+(2n+1)π4∫01cos(2(2n+1)πx)dx
= − 4 ( 2 n + 1 ) π cos ( ( 2 n + 1 ) π 2 ) + 4 ( 2 n + 1 ) π [ 2 ( 2 n + 1 ) π sin ( ( 2 n + 1 ) π 2 x ) ] 0 1 = -\frac{4}{(2n+1)\pi}\cos\left(\frac{(2n+1)\pi}{2}\right) + \frac{4}{(2n+1)\pi}\left[\frac{2}{(2n+1)\pi}\sin\left(\frac{(2n+1)\pi}{2}x\right)\right]_{0}^{1} =−(2n+1)π4cos(2(2n+1)π)+(2n+1)π4[(2n+1)π2sin(2(2n+1)πx)]01
= − 4 ( 2 n + 1 ) π cos ( ( 2 n + 1 ) π 2 ) + 8 ( ( 2 n + 1 ) π ) 2 ( sin ( ( 2 n + 1 ) π 2 ) − 0 ) = -\frac{4}{(2n+1)\pi}\cos\left(\frac{(2n+1)\pi}{2}\right) + \frac{8}{((2n+1)\pi)^2}\left(\sin\left(\frac{(2n+1)\pi}{2}\right) - 0\right) =−(2n+1)π4cos(2(2n+1)π)+((2n+1)π)28(sin(2(2n+1)π)−0)
= − 4 ( 2 n + 1 ) π cos ( ( 2 n + 1 ) π 2 ) + 8 ( ( 2 n + 1 ) π ) 2 sin ( ( 2 n + 1 ) π 2 ) = -\frac{4}{(2n+1)\pi}\cos\left(\frac{(2n+1)\pi}{2}\right) + \frac{8}{((2n+1)\pi)^2}\sin\left(\frac{(2n+1)\pi}{2}\right) =−(2n+1)π4cos(2(2n+1)π)+((2n+1)π)28sin(2(2n+1)π)
由于 cos ( ( 2 n + 1 ) π 2 ) = 0 \cos\left(\frac{(2n+1)\pi}{2}\right) = 0 cos(2(2n+1)π)=0,我们得到
A n = 8 ( ( 2 n + 1 ) π ) 2 sin ( ( 2 n + 1 ) π 2 ) A_n = \frac{8}{((2n+1)\pi)^2}\sin\left(\frac{(2n+1)\pi}{2}\right) An=((2n+1)π)28sin(2(2n+1)π)
注意到 sin ( ( 2 n + 1 ) π 2 ) \sin\left(\frac{(2n+1)\pi}{2}\right) sin(2(2n+1)π)的值会在 1 1 1 和 − 1 -1 −1 之间交替,因此
A n = 8 ( − 1 ) n ( ( 2 n + 1 ) π ) 2 A_n = \frac{8(-1)^n}{((2n+1)\pi)^2} An=((2n+1)π)28(−1)n
这就是系数 A n A_n An的解。
所以最终的解是 u ( x , t ) = ∑ n = 0 ∞ 8 ( − 1 ) n ( ( 2 n + 1 ) π ) 2 sin ( ( 2 n + 1 ) π x 2 ) e − ( ( 2 n + 1 ) 2 π 2 4 + 1 ) t . u(x, t) = \displaystyle\sum_{n=0}^{\infty}\frac{8(-1)^n}{((2n+1)\pi)^2} \sin\left(\frac{(2n+1)\pi x}{2}\right)e^{-\left(\frac{(2n+1)^2\pi^2}{4} + 1\right)t}. u(x,t)=n=0∑∞((2n+1)π)28(−1)nsin(2(2n+1)πx)e−(4(2n+1)2π2+1)t.
题目三
{ u t − a 2 u x x = 0 , x ∈ ( 0 , 2 ) , t > 0 u ( x , 0 ) = f ( x ) , x ∈ [ 0 , 2 ] , − u x ( 0 , t ) = 0 , u x ( 2 , t ) = 0 , t ≥ 0 \left\{ \begin{aligned} &u_{t}-a^2u_{xx} = 0, x\in (0,2), t>0 \\ &u(x,0)=f(x), x\in [0,2], \\ &-u_{x}(0,t) = 0, u_{x}(2,t) = 0, t\geq 0 \end{aligned} \right. ⎩ ⎨ ⎧ut−a2uxx=0,x∈(0,2),t>0u(x,0)=f(x),x∈[0,2],−ux(0,t)=0,ux(2,t)=0,t≥0
要使用分离变量法求解这个偏微分方程,我们首先假设解 u ( x , t ) u(x,t) u(x,t)可以写成两个函数的乘积形式,即 u ( x , t ) = X ( x ) T ( t ) u(x,t) = X(x)T(t) u(x,t)=X(x)T(t)。将这个形式代入原方程中,我们得到:
X ( x ) T ′ ( t ) − a 2 X ′ ′ ( x ) T ( t ) = 0 X(x)T'(t) - a^2X''(x)T(t) = 0 X(x)T′(t)−a2X′′(x)T(t)=0
为了将变量分离,我们可以两边同时除以 a 2 X ( x ) T ( t ) a^2X(x)T(t) a2X(x)T(t),得到:
T ′ ( t ) a 2 T ( t ) = X ′ ′ ( x ) X ( x ) = − λ \frac{T'(t)}{a^2T(t)} = \frac{X''(x)}{X(x)} = -\lambda a2T(t)T′(t)=X(x)X′′(x)=−λ
这里, λ \lambda λ是一个常数,这样我们就将原方程分离成了两个常微分方程:
- 时间部分: T ′ ( t ) a 2 T ( t ) = − λ \frac{T'(t)}{a^2T(t)} = -\lambda a2T(t)T′(t)=−λ,可以重写为 T ′ ( t ) + a 2 λ T ( t ) = 0 T'(t) + a^2\lambda T(t) = 0 T′(t)+a2λT(t)=0。
- 空间部分: X ′ ′ ( x ) X ( x ) = − λ \frac{X''(x)}{X(x)} = -\lambda X(x)X′′(x)=−λ,可以重写为 X ′ ′ ( x ) + λ X ( x ) = 0 X''(x) + \lambda X(x) = 0 X′′(x)+λX(x)=0。
接下来,我们需要解这两个常微分方程,并且满足边界条件和初始条件。
空间部分:
对于空间部分的方程 X ′ ′ ( x ) + λ X ( x ) = 0 X''(x) + \lambda X(x) = 0 X′′(x)+λX(x)=0,我们需要考虑边界条件 − X ′ ( 0 ) = 0 -X'(0) = 0 −X′(0)=0和 X ′ ( 2 ) = 0 X'(2) = 0 X′(2)=0。这个常微分方程是一个二阶常系数线性微分方程,其通解依赖于 λ \lambda λ的值:
- 如果 λ > 0 \lambda > 0 λ>0,那么方程的解是指数函数,这不满足边界条件。
- 如果 λ = 0 \lambda = 0 λ=0,那么方程的解是 X ( x ) = C 1 x + C 2 X(x) = C_1x + C_2 X(x)=C1x+C2。由边界条件 − X ′ ( 0 ) = 0 -X'(0) = 0 −X′(0)=0和 X ′ ( 2 ) = 0 X'(2) = 0 X′(2)=0,我们得到 C 1 = 0 C_1 = 0 C1=0,所以 X ( x ) = C 2 X(x) = C_2 X(x)=C2,这是一个常数解,对应于热传导方程的稳态解。
- 如果 λ < 0 \lambda < 0 λ<0,设 λ = − μ 2 \lambda = -\mu^2 λ=−μ2,那么方程的解是三角函数 X ( x ) = A cos ( μ x ) + B sin ( μ x ) X(x) = A\cos(\mu x) + B\sin(\mu x) X(x)=Acos(μx)+Bsin(μx)。由边界条件 − X ′ ( 0 ) = 0 -X'(0) = 0 −X′(0)=0,我们得到 B = 0 B = 0 B=0;由 X ′ ( 2 ) = 0 X'(2) = 0 X′(2)=0,我们得到 μ sin ( 2 μ ) = 0 \mu \sin(2\mu) = 0 μsin(2μ)=0,所以 μ n = n π 2 \mu_n = \frac{n\pi}{2} μn=2nπ,其中 n n n是非负整数。因此,空间部分的解为 X n ( x ) = A n cos ( n π x 2 ) X_n(x) = A_n \cos\left(\frac{n\pi x}{2}\right) Xn(x)=Ancos(2nπx)。
时间部分:
对于时间部分的方程 T ′ ( t ) + a 2 λ T ( t ) = 0 T'(t) + a^2\lambda T(t) = 0 T′(t)+a2λT(t)=0,由于我们已经设 λ = − μ 2 \lambda = -\mu^2 λ=−μ2,所以方程可以写为 T ′ ( t ) − a 2 μ 2 T ( t ) = 0 T'(t) - a^2\mu^2 T(t) = 0 T′(t)−a2μ2T(t)=0。这是一个一阶线性常微分方程,其通解为 T ( t ) = C e − a 2 μ 2 t T(t) = Ce^{-a^2\mu^2t} T(t)=Ce−a2μ2t。将 μ n = n π 2 \mu_n = \frac{n\pi}{2} μn=2nπ代入,我们得到时间部分的解为 T n ( t ) = C n e − a 2 n 2 π 2 4 t T_n(t) = C_n e^{-\frac{a^2n^2\pi^2}{4}t} Tn(t)=Cne−4a2n2π2t。
总解:
因此,原偏微分方程的解可以表示为这些分离变量解的线性组合:
u ( x , t ) = ∑ n = 0 ∞ A n cos ( n π x 2 ) e − a 2 n 2 π 2 4 t u(x,t) = \sum_{n=0}^{\infty} A_n \cos\left(\frac{n\pi x}{2}\right) e^{-\frac{a^2n^2\pi^2}{4}t} u(x,t)=n=0∑∞Ancos(2nπx)e−4a2n2π2t
其中,系数 A n A_n An可以通过初始条件 u ( x , 0 ) = f ( x ) u(x,0) = f(x) u(x,0)=f(x)确定。具体地,我们需要求解傅里叶级数:
f ( x ) = ∑ n = 0 ∞ A n cos ( n π x 2 ) f(x) = \sum_{n=0}^{\infty} A_n \cos\left(\frac{n\pi x}{2}\right) f(x)=n=0∑∞Ancos(2nπx)
通过对 f ( x ) f(x) f(x)进行适当的傅里叶展开,我们可以求出每个 A n A_n An的值。这样,我们就得到了原偏微分方程的解。
为了通过初始条件 u ( x , 0 ) = f ( x ) u(x,0) = f(x) u(x,0)=f(x)确定系数 A n A_n An,我们可以利用傅里叶级数的正交性。
具体地,我们将解 u ( x , t ) u(x,t) u(x,t) 在 t = 0 t=0 t=0 时的表达式与 cos ( m π x 2 ) \cos\left(\frac{m\pi x}{2}\right) cos(2mπx) 相乘,
并在区间 [ 0 , 2 ] [0,2] [0,2] 上对 x x x 进行积分。这样,我们可以得到 A n A_n An 的积分表达式。
首先,我们有:
u ( x , 0 ) = ∑ n = 0 ∞ A n cos ( n π x 2 ) = f ( x ) u(x,0) = \sum_{n=0}^{\infty} A_n \cos\left(\frac{n\pi x}{2}\right) = f(x) u(x,0)=n=0∑∞Ancos(2nπx)=f(x)
然后,我们将上式两边同时乘以 cos ( m π x 2 ) \cos\left(\frac{m\pi x}{2}\right) cos(2mπx),并在区间 [ 0 , 2 ] [0,2] [0,2] 上对 x x x 进行积分:
∫ 0 2 f ( x ) cos ( m π x 2 ) d x = ∫ 0 2 ∑ n = 0 ∞ A n cos ( n π x 2 ) cos ( m π x 2 ) d x \int_{0}^{2} f(x) \cos\left(\frac{m\pi x}{2}\right) dx = \int_{0}^{2} \sum_{n=0}^{\infty} A_n \cos\left(\frac{n\pi x}{2}\right) \cos\left(\frac{m\pi x}{2}\right) dx ∫02f(x)cos(2mπx)dx=∫02n=0∑∞Ancos(2nπx)cos(2mπx)dx
利用三角函数的正交性质,我们知道当 m ≠ n m \neq n m=n 时,积分
∫ 0 2 cos ( n π x 2 ) cos ( m π x 2 ) d x = 0 \int_{0}^{2} \cos\left(\frac{n\pi x}{2}\right) \cos\left(\frac{m\pi x}{2}\right) dx = 0 ∫02cos(2nπx)cos(2mπx)dx=0
而当 m = n m = n m=n 时,积分
∫ 0 2 cos 2 ( n π x 2 ) d x = 1 \int_{0}^{2} \cos^2\left(\frac{n\pi x}{2}\right) dx = 1 ∫02cos2(2nπx)dx=1
因此,我们可以得到 A n A_n An 的积分表达式:
A n = 1 2 ∫ 0 2 f ( x ) cos ( n π x 2 ) d x A_n = \frac{1}{2}\int_{0}^{2} f(x) \cos\left(\frac{n\pi x}{2}\right) dx An=21∫02f(x)cos(2nπx)dx
这就是系数 A n A_n An的积分表达式,可以通过这个表达式计算出每个 A n A_n An的具体值。
将系数 A n A_n An 的积分表达式代入 u ( x , t ) u(x,t) u(x,t) 的级数解表达式中,我们得到:
u
(
x
,
t
)
=
∑
n
=
0
∞
[
1
2
∫
0
2
f
(
x
)
cos
(
n
π
x
2
)
d
x
]
cos
(
n
π
x
2
)
e
−
a
2
n
2
π
2
4
t
u(x,t) = \sum_{n=0}^{\infty} \left[\frac{1}{2}\int_{0}^{2} f(x) \cos\left(\frac{n\pi x}{2}\right) dx\right] \cos\left(\frac{n\pi x}{2}\right) e^{-\frac{a^2n^2\pi^2}{4}t}
u(x,t)=n=0∑∞[21∫02f(x)cos(2nπx)dx]cos(2nπx)e−4a2n2π2t
这个表达式给出了原偏微分方程在给定初始条件
u
(
x
,
0
)
=
f
(
x
)
u(x,0) = f(x)
u(x,0)=f(x)下的级数解。这个解是由一系列余弦函数的乘积组成的,每个项都包含一个指数衰减因子,这反映了热传导过程中随时间的衰减。
当 f ( x ) = u 0 f(x) = u_0 f(x)=u0( u 0 u_0 u0是常数)时,我们可以分别计算 n = 0 n=0 n=0和 n > 0 n>0 n>0的情况下的 A n A_n An。
对于 n = 0 n=0 n=0的情况:
A 0 = 1 2 ∫ 0 2 u 0 cos ( 0 π x 2 ) d x = 1 2 ∫ 0 2 u 0 d x = 1 2 ⋅ 2 u 0 = u 0 A_0 = \frac{1}{2}\int_{0}^{2} u_0 \cos\left(\frac{0\pi x}{2}\right) dx = \frac{1}{2}\int_{0}^{2} u_0 dx = \frac{1}{2} \cdot 2u_0 = u_0 A0=21∫02u0cos(20πx)dx=21∫02u0dx=21⋅2u0=u0
对于 n > 0 n>0 n>0的情况:
由于 cos ( n π x 2 ) \cos\left(\frac{n\pi x}{2}\right) cos(2nπx)在区间 [ 0 , 2 ] [0,2] [0,2]上的积分为零,我们有:
A n = 1 2 ∫ 0 2 u 0 cos ( n π x 2 ) d x = u 0 2 ⋅ 0 = 0 A_n = \frac{1}{2}\int_{0}^{2} u_0 \cos\left(\frac{n\pi x}{2}\right) dx = \frac{u_0}{2} \cdot 0 = 0 An=21∫02u0cos(2nπx)dx=2u0⋅0=0
因此,对于 f ( x ) = u 0 f(x) = u_0 f(x)=u0的情况,我们得到 A 0 = u 0 A_0 = u_0 A0=u0,而 A n = 0 A_n = 0 An=0对于所有的 n > 0 n>0 n>0。
将这些系数代入级数解表达式中,我们得到偏微分方程的解:
u ( x , t ) = ∑ n = 0 ∞ A n cos ( n π x 2 ) e − a 2 n 2 π 2 4 t = u 0 cos ( 0 ) e − a 2 ⋅ 0 2 π 2 4 t + ∑ n = 1 ∞ 0 ⋅ cos ( n π x 2 ) e − a 2 n 2 π 2 4 t = u 0 u(x,t) = \sum_{n=0}^{\infty} A_n \cos\left(\frac{n\pi x}{2}\right) e^{-\frac{a^2n^2\pi^2}{4}t} = u_0 \cos(0) e^{-\frac{a^2 \cdot 0^2 \pi^2}{4}t} + \sum_{n=1}^{\infty} 0 \cdot \cos\left(\frac{n\pi x}{2}\right) e^{-\frac{a^2n^2\pi^2}{4}t} = u_0 u(x,t)=n=0∑∞Ancos(2nπx)e−4a2n2π2t=u0cos(0)e−4a2⋅02π2t+n=1∑∞0⋅cos(2nπx)e−4a2n2π2t=u0
所以,对于初始条件 f ( x ) = u 0 f(x) = u_0 f(x)=u0,偏微分方程的解为 u ( x , t ) = u 0 u(x,t) = u_0 u(x,t)=u0,即解是一个常数,与时间和空间无关。这反映了热传导方程在均匀初始条件下的稳态解。
u t t − u ( u x x + 2 u x y + u y y ) = e u u_{tt}-u(u_{xx}+2u_{xy}+u_{yy})=e^u utt−u(uxx+2uxy+uyy)=eu