时间序列分析方法之 -- 长短期记忆网络(LSTM)原理及Python代码示例

目录

原理

适用情况

Python示例代码

结论


 

原理

长短期记忆网络(LSTM,Long Short-Term Memory Networks)是一种特殊的递归神经网络(RNN),设计用于克服传统RNN在处理长序列数据时的梯度消失和梯度爆炸问题。LSTM通过引入门控机制来控制信息流,使其能够记住长期依赖关系。

LSTM单元由以下三个门组成:

  1. 遗忘门(Forget Gate):决定丢弃多少信息。
  2. 输入门(Input Gate):决定保留多少新信息。
  3. 输出门(Output Gate):决定当前细胞状态有多少输出到下一个单元。

每个LSTM单元包含一个细胞状态(Cell State),用于存储长期信息,通过这些门控机制来更新和维护细胞状态。

数学表达

  1. 遗忘门:决定需要遗忘的细胞状态部分。 eq?f_t%20%3D%20%5Csigma%28W_f%20%5Ccdot%20%5Bh_%7Bt-1%7D%2C%20x_t%5D%20+%20b_f%29

  2. 输入门:决定需要存储的新信息。

                        eq?i_t%20%3D%20%5Csigma%28W_i%20%5Ccdot%20%5Bh_%7Bt-1%7D%2C%20x_t%5D%20+%20b_i%29 

        ​​​​​​​        ​​​​​​​        eq?%5Ctilde%7BC%7D_t%20%3D%20%5Ctanh%28W_C%20%5Ccdot%20%5Bh_%7Bt-1%7D%2C%20x_t%5D%20+%20b_C%29

  1. 细胞状态更新:通过遗忘和新信息更新细胞状态。

                        eq?C_t%20%3D%20f_t%20*%20C_%7Bt-1%7D%20+%20i_t%20*%20%5Ctilde%7BC%7D_t

  1. 输出门:决定当前细胞状态输出多少。

                        eq?o_t%20%3D%20%5Csigma%28W_o%20%5Ccdot%20%5Bh_%7Bt-1%7D%2C%20x_t%5D%20+%20b_o%29

                       eq?h_t%20%3D%20o_t%20*%20%5Ctanh%28C_t%29

其中,σ 是 sigmoid 激活函数,eq?%5Ctanh 是 tanh 激活函数,W 和 b 是权重和偏置参数。

适用情况

LSTM网络特别适用于以下情况:

  1. 序列预测问题:如时间序列预测、天气预测、股票价格预测等。
  2. 自然语言处理(NLP):如文本生成、机器翻译、情感分析等。
  3. 语音识别:如语音到文本的转换。
  4. 视频处理:如视频分类、行为识别等。

LSTM适用于任何需要捕捉长时间依赖关系的任务,是解决传统RNN无法处理长序列问题的有效方法。

Python示例代码

以下是一个使用LSTM进行时间序列预测的示例代码,利用Keras库进行实现:

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential
from keras.layers import LSTM, Dense

# 生成样本数据
np.random.seed(0)
time = np.arange(0, 100, 0.1)
data = np.sin(time) + 0.1 * np.random.normal(size=len(time))

# 准备数据
data = data.reshape(-1, 1)
scaler = MinMaxScaler(feature_range=(0, 1))
data_scaled = scaler.fit_transform(data)

# 创建训练数据集
def create_dataset(data, look_back=1):
    X, Y = [], []
    for i in range(len(data)-look_back-1):
        a = data[i:(i+look_back), 0]
        X.append(a)
        Y.append(data[i + look_back, 0])
    return np.array(X), np.array(Y)

look_back = 10
X, Y = create_dataset(data_scaled, look_back)

# 重塑输入数据为 [样本数, 时间步长, 特征数]
X = X.reshape((X.shape[0], X.shape[1], 1))

# 创建LSTM模型
model = Sequential()
model.add(LSTM(50, input_shape=(look_back, 1)))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')

# 训练模型
model.fit(X, Y, epochs=100, batch_size=1, verbose=2)

# 做出预测
train_predict = model.predict(X)
train_predict = scaler.inverse_transform(train_predict)
Y_actual = scaler.inverse_transform([Y])

# 绘制结果
plt.plot(Y_actual[0], label='Actual Data')
plt.plot(train_predict, label='Predicted Data')
plt.legend()
plt.show()

在上述代码中:

  1. 生成了一些带有噪声的正弦波数据,作为样本时间序列数据。
  2. 将数据标准化为0到1之间的值。
  3. 创建训练数据集,其中 look_back 参数指定用多少个过去的时间步来预测当前时间步。
  4. 构建一个包含一个LSTM层和一个Dense层的序列模型。
  5. 训练模型并使用训练数据进行预测。
  6. 绘制实际数据和预测数据的比较图。

通过上述代码示例,可以看出如何利用LSTM模型进行时间序列预测,并且可以根据需要调整模型结构和参数来优化预测效果。

结论

长短期记忆网络(LSTM)是解决长序列数据中梯度消失和梯度爆炸问题的一种强大工具。其通过门控机制有效地控制信息流,从而捕捉长时间依赖关系。LSTM广泛应用于各种序列预测任务,自然语言处理和语音识别等领域。通过Python示例代码,可以直观地了解LSTM模型的实现过程和应用效果,为后续深入研究和应用提供基础。

 

【为什么要学习这门课程】深度学习框架如TensorFlow和Pytorch掩盖了深度学习底层实现方法,那能否能用Python代码从零实现来学习深度学习原理呢?本课程就为大家提供了这个可能,有助于深刻理解深度学习原理。左手原理、右手代码,双管齐下!本课程详细讲解深度学习原理并进行Python代码实现深度学习网络。课程内容涵盖感知机、多层感知机、卷积神经网络、循环神经网络,并使用Python 3及Numpy、Matplotlib从零实现上述神经网络。本课程还讲述了神经网络的训练方法与实践技巧,且开展了代码实践演示。课程对于核心内容讲解深入细致,如基于计算图理解反向传播算法,并用数学公式推导反向传播算法;另外还讲述了卷积加速方法im2col。【课程收获】本课程力求使学员通过深度学习原理、算法公式及Python代码的对照学习,摆脱框架而掌握深度学习底层实现原理方法。本课程将给学员分享深度学习的Python实现代码。课程代码通过Jupyter Notebook演示,可在Windows、ubuntu等系统上运行,且不需GPU支持。【优惠说明】 课程正在优惠中!  备注:购课后可加入白勇老师课程学习交流QQ群:957519975【相关课程】学习本课程的前提是会使用Python语言以及Numpy和Matplotlib库。相关课程链接如下:《Python编程的术与道:Python语言入门》https://edu.csdn.net/course/detail/27845《玩转Numpy计算库》https://edu.csdn.net/lecturer/board/28656《玩转Matplotlib数据绘图库》https://edu.csdn.net/lecturer/board/28720【课程内容导图及特色】
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值