准确率、精确率、召回率等基本概念

对于数据测试结果有下面4种情况:

TP: 预测为正,实际为正

FP: 预测为正,实际为负

TN:预测为负,实际为负

FN: 预测为负,实际为正

准确率:
Accuracy=(TP+TN)/(TP+TN+FN+FP),即预测正确的概率

精确率:
又名查准率,P = TP/ (TP+FP),即预测为正的正确率

召回率:
又名查全率,R = TP/ (TP+FN),即正样本的正确率

真正确率:
同召回率,查全率,TPR = TP/ (TP+FN),即正样本的正确率
假正确率:
FPR =FP/ (FP+TN),即负样本的错误率

PR曲线
y轴为精确率,x轴为召回率,越偏右上越好(都很高),但实际两者相互掣肘,难以同时满足。

ROC曲线
y轴为真正例率,x轴为假正例率,越偏左上越好
AUC值
ROC曲线下的面积,值介于0.5到1.0之间,较大的AUC代表了较好的performance。AUC值表示,随机抽取一个正样本和一个负样本,分类器正确给出正样本的score高于负样本的概率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值