准确率、精确率、召回率等基本概念

本文详细解析了机器学习中常见的评估指标,包括准确率、精确率、召回率、真正确率、假正确率等概念,以及PR曲线和ROC曲线的含义,帮助读者深入理解模型性能的量化标准。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对于数据测试结果有下面4种情况:

TP: 预测为正,实际为正

FP: 预测为正,实际为负

TN:预测为负,实际为负

FN: 预测为负,实际为正

准确率:
Accuracy=(TP+TN)/(TP+TN+FN+FP),即预测正确的概率

精确率:
又名查准率,P = TP/ (TP+FP),即预测为正的正确率

召回率:
又名查全率,R = TP/ (TP+FN),即正样本的正确率

真正确率:
同召回率,查全率,TPR = TP/ (TP+FN),即正样本的正确率
假正确率:
FPR =FP/ (FP+TN),即负样本的错误率

PR曲线
y轴为精确率,x轴为召回率,越偏右上越好(都很高),但实际两者相互掣肘,难以同时满足。

ROC曲线
y轴为真正例率,x轴为假正例率,越偏左上越好
AUC值
ROC曲线下的面积,值介于0.5到1.0之间,较大的AUC代表了较好的performance。AUC值表示,随机抽取一个正样本和一个负样本,分类器正确给出正样本的score高于负样本的概率。

### YOLOv8 模型的准确率精确召回率 对于YOLOv8模型而言,准确理解其性能评估中的几个核心概念至关重要。 #### 准确率(Accuracy) 在多类分类场景下,准确率是指所有预测正确的样本占总样本的比例。然而,在目标检测任务中,“准确率”这一术语并不常用,更多关注的是精确(Precision)和召回率(Recall),以及它们衍生出来的mAP指标[^1]。 #### 精确(Precision) 精确为真正例(True Positives, TP)除以真正例加假正例(False Positives, FP)的数量,即: \[ \text{Precision} = \frac{\text{TP}}{\text{TP}+\text{FP}} \] 这反映了当模型做出正面预测时,实际为真的比例。高精确意味着很少有背景或其他物体被错误地标记为目标对象[^3]。 #### 召回率(Recall) 召回率定义为真正例(TP)除以真正例加上假反例(False Negatives, FN)的数量: \[ \text{Recall} = \frac{\text{TP}}{\text{TP}+\text{FN}} \] 该比表示所有真实存在的目标中有多少被成功识别出来。较高的召回率表明较少的目标丢失未检出。 #### 综合考量 值得注意的是,虽然可以单独优化精确召回率,但在实践中往往需要找到两者之间的平衡点。例如,如果仅追求高的召回率而忽视精确,则可能导致大量误报;反之亦然。因此,通常采用mAP作为整体性能度量标准,因为它考虑到了不同阈值下的平均精度变化情况。 ```python def calculate_precision_recall(tp, fp, fn): precision = tp / (tp + fp) if (tp + fp) != 0 else 0 recall = tp / (tp + fn) if (tp + fn) != 0 else 0 return precision, recall ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值