对于数据测试结果有下面4种情况:
TP: 预测为正,实际为正
FP: 预测为正,实际为负
TN:预测为负,实际为负
FN: 预测为负,实际为正
准确率:
Accuracy=(TP+TN)/(TP+TN+FN+FP),即预测正确的概率
精确率:
又名查准率,P = TP/ (TP+FP),即预测为正的正确率
召回率:
又名查全率,R = TP/ (TP+FN),即正样本的正确率
真正确率:
同召回率,查全率,TPR = TP/ (TP+FN),即正样本的正确率
假正确率:
FPR =FP/ (FP+TN),即负样本的错误率
PR曲线:
y轴为精确率,x轴为召回率,越偏右上越好(都很高),但实际两者相互掣肘,难以同时满足。
ROC曲线:
y轴为真正例率,x轴为假正例率,越偏左上越好
AUC值:
ROC曲线下的面积,值介于0.5到1.0之间,较大的AUC代表了较好的performance。AUC值表示,随机抽取一个正样本和一个负样本,分类器正确给出正样本的score高于负样本的概率。