Ultra Fast Deep Lane Detection V2

【导语】Ultra Fast Deep Lane Detection 是个比较有特点的车道线检测模型,把检测转化成分类来实现。现在出了 V2,有了几个创新点,于是又来研究一下。之前参考 Ultra Fast Deep Lane Detection V1 设计了一个全新的车道线检测网络,把模型压缩了80%,并部署使用了。另外还把 v1 和 yolov4 合并实现了多任务:https://github.com/Huangdebo/YOLOv4-MultiTask

1 介绍

这篇文章提出了一个超快车道线检测,区别于之前基于分割和回归的模型,该模型把车道线检测看车是分类问题,而且使用了全连接层,加强了模型的全局感知能力。另外,本文还设计了一个混合锚点机制,对不同的车道使用不用的锚点,很好地解决了两侧车道检测性能不佳的问题。该模型在兼顾了速度的前提下,还很好地处理了遮挡和暗光等情况,取得了不错的性能。
图0

2 模型设计

2.1 使用锚点来表示车道线

图1
为了表示车道线,首先引入了横向锚点,把车道线看车横向锚点的一组关键点。但当两侧的车道线的水平角度比较小时,便会引起定位问题,也就是一定宽度的车道线会覆盖到多个关键点,导致定位错乱,而且角度越小,问题越严重:
图2
为了解决上述的定位错误问题,文章便提出一种混合锚点机制,中间水平角度大的车道线使用横向锚点来表达,两侧水平角度小的车道线用纵向锚点来表达。每条车道线都用一组归一化坐标来表示
图3

2.2 基于锚点的网络设计

因为每条车道线都用一组归一化坐标来表示,而且是把车道线检测看成分类任务,于是可以通过类别数目来映射出每个车道线关键点的类别:
公式1
另外,网络还添加了一个分支,用来判别车道线在该处是否存在。该分支的目标就只有两个值:1和0,分别代表存在和不存在:
公式2
公式3

2.3 序列分类的损失函数

既然是分类任务,那自然就会想到使用基本的分类损失函数,相当于把关键点的不同位置看成不同的类别,直接用 CE loss 来表达:
公式5
于基本的分类不一样的是,这个位置的类别是有序的,也就是可以把这个位置的预测值看成是各个位置的投票 均值,越靠近 groundtruth 的地方投票值越大,可以缓解预测偏移的问题:
公式6
公式7
于是,可以这个期望损失可以表达成:
公式8
另外,对于网络另一个用以判别车道线是否存在的分支,就是一个二分类问题,其损失函数可以表达成:
公式9
所以整个模型的损失函数便可以组成:
公式10

3 消融实验

3.1 混合锚点机制的作用

混合锚点机制中包含了横向锚点策略和纵向锚点策略,针对不同的车道线,使用不同的策略。为了对比混合锚点机制的作用,作者分别单独使用横向锚点策略和纵向锚点策略以及混合锚点来进行对比:
表格4

3.2 序列分类的作用

相比于基本的分类任务,文章中所用的序列分类还利用了车道线关键点位置的有序性。为了对比序列分类的作用,作者还使用了传统分类和回归的方式来比对。对于回归方式,则是把网络的分类头换成回归头,并用 smooth L1 los 来训练。实验表明,利用了关键点有序性的序列分类的性能明显优于一般的分类和回归方式:
表格5

3.3 序列分类损失的消融

序列分类的损失函数包含了两部分,一个是基本的分类损失和一个期望损失。作者也进行了消融实验来对比它们的作用:
表格6

3.4 类别的个数和锚点数量的影响

因为是把车道线的位置检测看成是关键点位置的分类,那久必须要设定一个类别数目,作者通过调整类别数目来做对比实验,发现随着类别数目的增加,模型的性能显示提升然后再下降,说明类别数目并不是越多越好。同样,锚点的数量也需要预先设定,原则上讲,锚点数量越多,对车道线的检测就越精细,但也意味着计算量也更大,所以必须要在模型速度和性能上做一个权衡。
图4

4 结论

使用了混合锚点机制和序列分类损失,缓解了 V1 中两侧车道线检测性能不足的问题,而且还能保持一样的高效率。但锚点的数目和序列分类的数目丢等参数都需要手动设定,可能存在一定的数据相关性。而且网络最后一层使用的是全连接层来提升网络的感知能力,导致参数比较大,对工程部署不太友好,这些都是可优化的点。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: "Ultra fast structure-aware deep lane detection" 是一种高速道路车道检测方法,它使用了深度学习技术,并且能够识别道路的结构特征。这种方法可以提高道路车道检测的准确性和速度。 ### 回答2: Ultra Fast Structure-Aware Deep Lane Detection是一种基于深度学习的车道线检测算法,它能够实时高效地检测道路上的车道线。该算法采用了各种技巧来提高车道线检测的准确性和效率,例如图像金字塔和多尺度网络结构等。 该算法使用了残差网络(ResNet)进行特征提取,并结合了多层特征的信息来进行检测。同时,它还加入了结构感知的策略,通过考虑车道线的几何形状和连续性,进一步提高了检测的精度。 此外,该算法还采用了快速车道线优化(FLO)技术,可以对检测到的车道线进行优化和平滑处理。这样,不仅可以去除一些噪声和错误检测,还可以更好地适应车道线的曲率和变化。 Ultra Fast Structure-Aware Deep Lane Detection已经在研究中被证明具有很高的准确性和实时性,并且可以适用于不同的道路情况和车辆类型。它在自动驾驶、智能交通监控等领域具有广泛的应用前景。 ### 回答3: 超快速的结构感知深度车道检测是一种基于深度学习和图像识别技术的车道线检测算法。它通过分析车道线的结构特征和背景信息,能够快速准确地检测出车道线的位置和方向,从而为自动驾驶等领域提供了最新的解决方案。 与传统的车道线检测算法相比,超快速的结构感知深度车道检测算法具有以下优点: 首先,该算法利用深度学习的方法,通过大量的训练数据进行模型的训练,使其具备了强大的特征提取和图像识别能力,从而提高了检测车道线的准确性和鲁棒性。 其次,该算法基于车道线的结构信息进行检测,能够较好地识别直线、曲线等不同类型的车道线,同时能够适应环境变化、天气情况等多样化的场景。 最后,该算法采用基于原图像的分割和高效的滑动窗口搜索策略,可以在短时间内完成车道线的检测,并且消耗的计算资源较少,能够实现实时检测和应用。 总之,超快速的结构感知深度车道检测是一种非常先进和实用的车道线检测算法,能够为自动驾驶、智能车辆等领域带来更高效、更安全、更可靠的解决方案。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值