线性模型第3讲:Lasso方法

Lasso方法用于估计稀疏线性模型,通过引入惩罚项实现特征选择。本文讨论了如何设置正则参数α,包括交叉验证法和基于信息准则的模型选择,并介绍了多任务Lasso在处理多维回归问题中的应用。通过Python代码展示Lasso模型选择实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文合作、课题指导请联系QQ2279055353

Lasso是一种估计稀疏稀疏的线性模型。稀疏系数,就是系数里有很多是零。它可以用来减少特征数,在特定情况下,Lasso方法也能够精确地恢复非零特征集。数学上,Lasso由一个带有惩罚项的线性模型组成,最小化的目标函数:
min ⁡ w 1 2 n ∥ X w − y ∥ 2 2 + α ∥ w ∥ 1 \mathop{\min}\limits_{w}\dfrac{1}{2n} \| Xw-y\|_2^2+\alpha\|w\|_1 wmin2n1Xwy22+αw1
这样,lasso估计量解决了带有 α ∥ w ∥ 1 \alpha\|w\|_1 αw1 惩罚项的最小二乘问题。这里, α > 0 \alpha>0 α>

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值