Gradient Boosting算法理论

本文介绍了梯度提升算法的基本原理,从最小二乘法出发,详细阐述了如何通过梯度下降优化模型,并逐步构建强预测模型。接着,讨论了在实际应用中使用决策树作为基学习器的梯度提升树,以及树的规模对模型复杂度的影响。
摘要由CSDN通过智能技术生成

机器学习训练营——机器学习爱好者的自由交流空间(入群联系qq:2279055353)

介绍

梯度提升(Gradient Boosting)是一种用于回归和分类问题的机器学习技术。它集成弱预测模型,典型的是决策树,产生一个强预测模型。该方法分阶段建立弱模型,在每个阶段通过优化一个任意可微的损失函数建立弱模型。下面,我们以简单的最小二乘回归解释梯度提升法的原理。

最小二乘法的目标是,通过最小化均方误差 1 n ∑ i = 1 n ( y i − y ^ i ) 2 \dfrac{1}{n}\sum\limits_{i=1}^n (y_i-\hat{y}_i)^2 n1i=1n(yiy^i)2, “教”一个模型 F F F 预测 y ^ = F ( x ) \hat{y}=F(x) y^=F(x).

在梯度提升的每一个阶段 m ,   1 ≤ m ≤ M m,\,1\le m\le M m,1mM, 假设有一个不完美的模型 F m F_m Fm, 然后在 F m F_m Fm 上增加一个估计量 h h h 改善它。即, F m + 1 ( x ) = F m ( x ) + h ( x ) F_{m+1}(x)=F_m(x)+h(x) Fm+1(x)=Fm(x)+h(x). 一个完美的 h h h 应该满足
F m + 1 ( x ) = F m ( x ) + h ( x ) = y F_{m+1}(x)=F_m(x)+h(x)=y Fm+1(x)=Fm(x)+h(x)=y, 或者,等价地, h ( x ) = y − F m ( x ) h(x)=y-F_m(x) h(x)=yFm(x). 因此,梯度提升将在残差
y − F m ( x ) y-F_m(x) yF<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值