QIIME 2教程. 24可用和开发中插件AvailableFuturePlugins(2023.5)

可用插件

Available plugins

https://docs.qiime2.org/2023.5/plugins/available/

用户可以通过插件使用QIIME 2微生物组分析功能。QIIME 2的当前最新版(2023.5)包含以下官方插件:

alignment对齐:用于生成和处理序列对齐

  • 方法

    • mafft:

      使用MAFFT从头进行多序列比对

    • mafft-add:使用MAFFT将序列添加到多个序列比对中

    • mask:

      保守位置和间隙过滤

composition:用于组成型分数据分析

  • 方法

    • add-pseudocount:

      将伪计数添加到表中

    • abcombc:使用偏差校正分析微生物组的组成

  • 可视化

    • ancom:

      应用ANCOM识别丰度不同的特征

    • da-barplot:

      差异丰度条形图

    • tabulate查看ANCOM-BC的表格输出

cutadapt:用于从序列数据中除去接头,引物和其他不需要的序列

  • 方法

    • demux-paired:

      将具有序列条形码的成对序列数据拆分

    • demux-single:

      将具有条形码顺序的单端序列数据拆分

    • trim-paired:

      在拆分后的配对末端序列中查找和删除接头序列

    • trim-single:

      按拆分后的单端序列查找和删除接头序列

dada2:用于使用DADA2进行序列质量控制

  • 方法

    • denoise-ccs:对单端Pacbio CCS进行去噪和去冗余

    • denoise-paired:

      对双端序列进行去噪和去冗余

    • denoise-pyro:

      对单端焦磷酸序列进行去噪和去冗余

    • denoise-single:

      对单端序列去噪和去冗余

deblur:使用Deblur进行序列质量控制

  • 方法

    • denoise-16S:

      对16S序列进行去正向过滤

    • denoise-other:

      使用用户指定的正向过滤

  • 可视化

    • visualize-stats:

      可视化每个样本的Deblur统计信息

      demux:用于混合测序样本拆分和查看序列质量

  • 方法

    • emp-paired:

      EMP协议生成的成对末端序列数据进行样本拆分

    • emp-single:

      对通过EMP协议生成的单端序列数据进行样本拆分

    • filter-samples:

      从样本拆分后的数据中筛选出样本

    • subsample-paired:

      子采样配对末端序列,无放回抽样

    • subsample-single:

      子采样单端序列,无放回抽样

  • 可视化

    • summarize:

      汇总每个样本的计数

diversity:探索群落多样性的插件

  • 流程

    • alpha:

      alpha多样性

    • alpha-phylogenetic:alpha多样性(系统发育)

    • beta-correlation:

      Beta多样性相关

    • beta-phylogenetic:

      Beta多样性(系统发育)

    • core-metrics:

      核心多样性指标(非系统发生)

    • core-metrics-phylogenetic:

      核心多样性指标(系统发生和非系统发生)

  • 方法

    • filter-distance-matrix:

      过滤距离矩阵中的样本。

    • pcoa:

      主坐标分析

    • pcoa-biplot:

      主坐标分析二元图bipot

    • procrustes-analysis:

      Procrustes分析

    • tsne:T分布随机邻居嵌入

    • umap:均匀流形近似和投影

  • 可视化

    • adonis:

      adonis PERMANOVA检验β多样性组间显著性

    • alpha-correlation:

      Alpha多样性相关分析

    • alpha-group-significance:

      Alpha多样性比较

    • alpha-rarefaction:

      Alpha稀疏曲线

    • beta-group-significance:

      Beta多样性组间显著性分析

    • beta-rarefaction:

      Beta多样性稀疏

    • bioenv:

      环境因子分析

    • mantel:

      将mantel检验应用于两个距离矩阵

diversiy-lib:计算群落多样性的插件

  • 方法

    • alpha-passthrough: α值传递(非系统发育)

    • beta-passthrough: β值传递(非系统发育)

    • beta-phylogenetic-meta-passthrough: β值系统发育元分流

    • beta-phylogenetic-passthrough: β值系统发育传递

    • bray-curtis: Bray-Curtis 差异度

    • faith-pd: 费思的系统发育多样性

    • jaccard:杰卡德距离

    • observed-features: 观测特征

    • pielou-evenness: 皮洛伊均匀度

    • shannon-entropy:香农熵

    • unweighted-unifrac: 无权重 UniFrac

    • weighted-unifrac:加权统一

      emperor:排序绘图

  • 可视化

    • biplot:

      可视化并与主坐标分析交互biplot

    • plot:

      可视化并与主坐标分析图进行交互

    • procrustes-plot:

      可视化并与procrustes绘图进行交互

feature-classifier:序列物种分类

  • 流程

    • classify-consensus-blast:

      BLAST混合分类器

    • classify-consensus-vsearch: 基于VSEARCH的混合分类器

    • classify-hybrid-vsearch-sklearn:

      ALPHA混合分类器:

      VSEARCH精确匹配+ sklearn分类器

  • 方法

    • classify-consensus-blast:

      BLAST +一致物种注释分类器

    • classify-consensus-vsearch:

      基于VSEARCH的一致物种注释分类器

    • classify-sklearn:

      预先基于sklearn的物种注释分类器

    • extract-reads:

      从参考中提取读取

    • fit-classifier-naive-bayes:

      训练naive_bayes分类器

    • fit-classifier-sklearn:

      训练几乎任意的scikit-learn分类器

    • vsearch-global: VSEARCH 全局对齐搜索

      feature-table:用于按特征表处理样本

  • 方法

    • filter-features:

      从表中过滤特征

    • filter-features-conditionally:根据丰度和流行度从表中筛选要素

    • filter-samples:

      从表格中过滤样本

    • filter-seqs:

      从序列中过滤特征

    • group:

      按元数据列对样本或特征进行分组

    • merge:

      合并多个表

    • merge-seqs:

      合并特征序列的集合

    • merge-taxa:

      合并特征分类的集合

    • presence-absence:

      转换为在二元无权重有/无表

    • rarefy:

      稀疏表

    • relative-frequency:

      转换为相对频率

    • rename-ids:重命名表中的示例或功能id

    • subsample:

      子样本表

    • transpose:

      转置特征表

  • 可视化

    • core-features:

      确定表中的核心功能

    • heatmap:

      生成特征表的热图

    • summarize:

      汇总表

    • tabulate-seqs:

      与每个功能关联的序列视图

fragment-insertion:用于扩展系统发育

  • 方法

    • classify-otus-experimental:

      通过在参考系统发育中找到最接近的OTU,获得分类谱系

    • filter-features:

      从表中过滤树中的片段

    • sepp:

      使用SEPP将片段序列插入参考系统发育

gneiss:用于构建成分模型的插件

  • 方法

    • assign-ids:

      在树的内部节点上分配ID,并确保它们与表列一致

    • correlation-clustering:

      使用特征相关的层次聚类

    • gradient-clustering:

      使用梯度信息的层次聚类

    • ilr-hierarchical:

      等距对数比转换应用于层级聚类

    • ilr-phylogenetic:

      等距对数比变换应用于系统树

    • ilr-phylogenetic-differential:差异丰度的系统发育对数比

    • ilr-phylogenetic-ordination:通过系统发育等距对数比变换进行排序

  • 可视化

    • balance-taxonomy:

      balance摘要

    • dendrogram-heatmap:

      树状图热图

    • lme-regression:

      简单线性混合效应回归

    • ols-regression:

      简单普通最小二乘回归

longitudinal:用于配对样本和时间序列分析的插件

  • 流程

    • feature-volatility:

      特征易变性分析

    • maturity-index:

      微生物成熟度指数预测

  • 方法

    • first-differences:

      计算相继状态之间的一阶差异或与基线的差异

    • first-distances:

      计算相继状态之间的第一距离或距基线的距离

    • nmit:

      非参数微生物相互依赖性测试

  • 可视化

    • anova:

      ANOVA检验

    • linear-mixed-effects:

      线性混合效果建模

    • pairwise-differences:

      成对差异检验和箱形图

    • pairwise-distances:

      成对距离检验和箱线图

    • plot-feature-volatility:

      绘制纵向特征波动图和重要性

    • volatility:

      生成交互式波动图

metadata:处理元数据

  • 方法

    • distance-matrix:

      从数字“元数据”列创建距离矩阵

    • shuffle-groups:分类示例元数据中的随机播放值

  • 可视化

    • tabulate:

      以交互方式浏览HTML表中的元数据

phylogeny:生成和处理系统发育

  • 流程

    • align-to-tree-mafft-fasttree:

      使用fasttree和mafft对齐构建系统发育树

    • align-to-tree-mafft-iqtree:使用iqtree和mafft对齐构建系统发育树

    • align-to-tree-mafft-raxml:使用raxml和mafft aligning对齐构建系统发育树

  • 方法

    • fasttree:

      使用FastTree构建系统发育树

    • filter-table:

      从表中删除树中不存在特征

    • filter-tree:根据元数据从树中移除要素

    • iqtree:

      使用IQ-TREE构建系统发育树

    • iqtree-ultrafast-bootstrap:

      使用具有引导支持的IQ-TREE构建系统发育树

    • midpoint-root:

      中点根系统发育树

    • raxml:

      使用RAxML构建系统发育树

    • raxml-rapid-bootstrap:

      使用RAxML通过自展支持构建系统树

    • robinson-foulds:计算系统发育树之间的Robinson-Foulds距离

quality-control:用于特征和序列数据质量控制

  • 方法

    • bowite2-build:从参考序列中构建bowtie索引

    • decontam-identify:识别污染物

    • decontam-remove:去除污染物

    • exclude-seqs:

      通过比对排除序列

    • filter-reads:通过与参考数据库的对齐来过滤解复用序列

  • 可视化

    • decontam-score-viz:生成分数的直方图表示

    • evaluate-composition:

      评估样本的预期分类与观察分类

    • 评估序列:

      比较查询(观察到的)与参考(预期的)序列

    • 评估分类法:

      评估预期分类法与观察分类法的分配

quality-filter:用于基于PHRED的过滤和修整的插件

  • 方法

    • q得分:

      基于序列质量得分的质量过滤器

sample-classifier:用于对样本元数据进行机器学习预测的插件

  • 分析流程

    • 分类样本:

      训练和测试交叉验证的监督学习分类器

    • class-samples-from-dist:

      在标记的距离矩阵上运行k个最近邻

    • heatmap:

      生成重要功能的热图

    • metatable:

      将正数字元数据(输入)转换(并合并)到特征表中

    • regress-samples回归样本:

      训练和测试交叉验证的监督学习回归器

  • 方法

    • classify-samples-ncv:

      嵌套的交叉验证的监督学习分类器

    • fit-classifier适合分类器:

      适合监督学习的分类器

    • fit-regressor:

      适合监督学习的回归器

    • predict-classification预测分类:

      使用训练有素的分类器预测新样本的目标值

    • predict-regression预测回归:

      使用训练有素的回归器预测新样本的目标值

    • regress-samples-ncv:

      嵌套的交叉验证的监督学习回归器

    • split-table拆分表:

      将功能表拆分为训练集和测试集

  • 可视化工具

    • confusion-matrix:

      从样本分类器预测中得出一个混淆矩阵

    • scatterplot散点图:

      进行2D散点图和回归预测的线性回归

    • 总结:

      为训练有素的估算器汇总参数和特征提取信息

      taxa分类:用于处理功能分类注释的插件

  • 方法

    • collapse合并:

      在指定分类层级进行丰度合并

    • filter-seqs:

      基于分类的特征序列过滤器

    • filter-table:

      基于分类的特征表过滤器

  • 可视化工具

    • barplot条形图:

      通过交互式条形图可视化分类法

types类型:用于微生物组分析的插件定义类型

vsearch:用于通过vsearch进行聚类和去冗余的插件

  • 流程

    • cluster-features-open-reference:

      半有参聚类

  • 方法

    • cluster-features-closed-reference:

      有参聚类

    • cluster-features-de-novo:

      从头/无参聚类

    • dereplicate-sequences:

      去除重复序列

    • merge-pairs:合并双端序列

    • uchime-denovo:

      使用vsearch进行从头嵌合体过滤

    • uchime-ref:

      使用vsearch的基于参考数据的嵌合体过滤

  • 可视化

    • fastq-stats:

      使用VSEARCH进行Fastq统计

正在或计划开发的插件

https://docs.qiime2.org/2023.5/plugins/future/

QIIME 2论坛(https://forum.qiime2.org/)中讨论了计划用于将来版本的插件和非核心插件。如果您对QIIME 2方法,操作,管道或插件的可用性有疑问,请在此处发表您的问题。如果您使用的插件不属于QIIME 2核心发行版,但您想通知QIIME 2用户,则应在论坛的“Community Plugins 社区插件(https://forum.qiime2.org/c/community-plugins)”类别中发布主题。

译者简介

刘永鑫,研究员,博士生导师。2014年博士毕业于中国科学院大学生物信息学专业,之后在中国科学院遗传与发育生物学研究所工作历任博士后、工程师、高级工程师,2022年10月加入中国农业科学院深圳农业基因组研究所担任课题组长。研究方向为宏基因组方法开发、功能挖掘和科学传播。参与QIIME 2项目,主导开发了易扩增子(EasyAmplicon)、易宏基因组(EasyMetagenome)、培养组(Culturome)分析流程、数据分析网站(EVenn、ImageGP) 和R包(amplicon、ggClusterNet)等,目标是全面打造宏基因组领域方法学基础设施,推动微生物组学发展。以(共同)第一或通讯作者在Nature Biotechnology、Nature Microbiology、iMeta等期刊发表论文20余篇。合作在Science、Cell Host & Microbe、Microbiome等期刊发表论文20余篇,累计发表论文50余篇,被引用13000+次。主编《微生物组实验手册》专著,由300多位同行参与,共同打造本领域长期更新的中文百科全书。创办宏基因组公众号,15万+同行关注,分享原创文章3千余篇,累计阅读量超4千万,打造本领域最具影响力的科学传播平台。发起《iMeta》期刊,联合全球千位专家共同打造宏基因组学、微生物组和生物信息学顶刊,解决我国本领域期刊出版卡脖子问题。课题组长期招聘博士后、客座研究生,有兴趣可加微信yongxinliu详谈。

王惠铃,湖南农业大学,生物信息学本科在读,在刘永鑫组毕业实习。负责本次版本的更新和测试。

Reference

https://docs.qiime2.org/2023.5/

Evan Bolyen, Jai Ram Rideout, Matthew R. Dillon, Nicholas A. Bokulich, Christian C. Abnet, Gabriel A. Al-Ghalith, Harriet Alexander, Eric J. Alm, Manimozhiyan Arumugam, Francesco Asnicar, Yang Bai, Jordan E. Bisanz, Kyle Bittinger, Asker Brejnrod, Colin J. Brislawn, C. Titus Brown, Benjamin J. Callahan, Andrés Mauricio Caraballo-Rodríguez, John Chase, Emily K. Cope, Ricardo Da Silva, Christian Diener, Pieter C. Dorrestein, Gavin M. Douglas, Daniel M. Durall, Claire Duvallet, Christian F. Edwardson, Madeleine Ernst, Mehrbod Estaki, Jennifer Fouquier, Julia M. Gauglitz, Sean M. Gibbons, Deanna L. Gibson, Antonio Gonzalez, Kestrel Gorlick, Jiarong Guo, Benjamin Hillmann, Susan Holmes, Hannes Holste, Curtis Huttenhower, Gavin A. Huttley, Stefan Janssen, Alan K. Jarmusch, Lingjing Jiang, Benjamin D. Kaehler, Kyo Bin Kang, Christopher R. Keefe, Paul Keim, Scott T. Kelley, Dan Knights, Irina Koester, Tomasz Kosciolek, Jorden Kreps, Morgan G. I. Langille, Joslynn Lee, Ruth Ley, Yong-Xin Liu, Erikka Loftfield, Catherine Lozupone, Massoud Maher, Clarisse Marotz, Bryan D. Martin, Daniel McDonald, Lauren J. McIver, Alexey V. Melnik, Jessica L. Metcalf, Sydney C. Morgan, Jamie T. Morton, Ahmad Turan Naimey, Jose A. Navas-Molina, Louis Felix Nothias, Stephanie B. Orchanian, Talima Pearson, Samuel L. Peoples, Daniel Petras, Mary Lai Preuss, Elmar Pruesse, Lasse Buur Rasmussen, Adam Rivers, Michael S. Robeson, Patrick Rosenthal, Nicola Segata, Michael Shaffer, Arron Shiffer, Rashmi Sinha, Se Jin Song, John R. Spear, Austin D. Swafford, Luke R. Thompson, Pedro J. Torres, Pauline Trinh, Anupriya Tripathi, Peter J. Turnbaugh, Sabah Ul-Hasan, Justin J. J. van der Hooft, Fernando Vargas, Yoshiki Vázquez-Baeza, Emily Vogtmann, Max von Hippel, William Walters, Yunhu Wan, Mingxun Wang, Jonathan Warren, Kyle C. Weber, Charles H. D. Williamson, Amy D. Willis, Zhenjiang Zech Xu, Jesse R. Zaneveld, Yilong Zhang, Qiyun Zhu, Rob Knight & J. Gregory Caporaso#. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology. 2019, 37: 852-857. https://doi.org/10.1038/s41587-019-0209-9

猜你喜欢

iMeta简介 高引文章 高颜值绘图imageGP 网络分析iNAP
iMeta网页工具 代谢组MetOrigin 美吉云乳酸化预测DeepKla
iMeta综述 肠菌菌群 植物菌群 口腔菌群 蛋白质结构预测

10000+:菌群分析 宝宝与猫狗 梅毒狂想曲 提DNA发Nature

系列教程:微生物组入门 Biostar 微生物组  宏基因组

专业技能:学术图表 高分文章 生信宝典 不可或缺的人

一文读懂:宏基因组 寄生虫益处 进化树 必备技能:提问 搜索  Endnote

扩增子分析:图表解读 分析流程 统计绘图

16S功能预测   PICRUSt  FAPROTAX  Bugbase Tax4Fun

生物科普:  肠道细菌 人体上的生命 生命大跃进  细胞暗战 人体奥秘  

写在后面

为鼓励读者交流快速解决科研困难,我们建立了“宏基因组”讨论群,己有国内外6000+ 科研人员加入。请添加主编微信meta-genomics带你入群,务必备注“姓名-单位-研究方向-职称/年级”。高级职称请注明身份,另有海内外微生物PI群供大佬合作交流。技术问题寻求帮助,首先阅读《如何优雅的提问》学习解决问题思路,仍未解决群内讨论,问题不私聊,帮助同行。

点击阅读原文,跳转最新文章目录阅读

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值