Compared to histamine-2 receptor antagonist, proton pump inhibitor induces stronger oral-to-gut microbial transmission and gut microbiome alterations: a randomized controlled trial
Article,2023-11-22,Gut,[IF 24.5]
DOI:10.1136/gutjnl-2023-330168
原文链接:https://gut.bmj.com/content/early/2023/11/22/gutjnl-2023-330168
第一作者:Jiaying Zhu1
通讯作者:Xing-Ming Zhao2,3,4,5,6* and Wei-Hua Chen1,7,8*
主要单位:
1 Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
2 Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
3 Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
4 State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
5 MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
6 International Human Phenome Institutes (Shanghai), Shanghai, China
7 Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
8 Medical Artificial Intelligence Research Institute, Binzhou Medical University, Yantai 264003, China
* Correspondence should be addressed to Wei-Hua Chen (weihuachen@hust.edu.cn) and Xing-Ming Zhao (xmzhao@fudan.edu.cn).
- 摘要 -
目标: 我们旨在通过纵向队列比较质子泵抑制剂(PPIs)和组胺2受体拮抗剂(H2RAs)对肠道微生物的影响。
设计: 健康志愿者被随机分配接受连续七天的PPI(n = 23)或H2RA(n = 26)。我们在干预前后收集了口腔(唾液)和粪便样本进行了宏基因组测序。我们分析了药物干预引起的口腔和肠道微生物组的变化,包括微生物的丰度和生长速率、口腔到肠道的传播,并比较了PPI组和H2RA组之间的差异。
结果:两种药物都对肠道微生物产生了一定的扰动,其中PPI表现出更为显著的影响。PPI的使用导致口腔到肠道传播的程度显著增加,并促进了特定口腔微生物在肠道中的生长。这导致肠道中口腔物种的数量和总丰度显著增加,包括已知与疾病相关的物种,如Fusobacterium nucleatum和 Streptococcus anginosus。总体而言,基于肠道微生物数据构建的机器学习分类器能够准确区分PPI使用与否,模型的AUROC为0.924,而H2RA组分类器的 AUROC则为0.509。
结论: 我们的研究证明,与H2RAs相比,PPIs对肠道微生物组和口腔到肠道传播产生更大的影响,为解释长期使用PPI与某些疾病风险增加之间的机制提供了新的见解。
- 引言 -
胃酸抑制剂,如质子泵抑制剂(PPIs)和组胺2受体拮抗剂(H2RAs),在全球范围内被广泛用于各种胃肠道疾病,包括消化不良、消化性溃疡和胃食管反流病(GERD)等的治疗。癌症、肝病或其他严重疾病患者往往会由于存在各种胃部不适的并发症而服用这些药物。尽管这两类药物在治疗与酸相关的疾病方面已被证明具有疗效,但长期使用PPIs与结直肠癌(CRC)和炎症性肠病(IBD)等肠道疾病以及肺炎和艰难梭菌感染等风险增加有关。相比之下,H2RAs被认为是比PPI要安全的替代药物。
近年来,研究人员发现长期使用PPI可能导致肠道微生物组的变化,其表现为各种微生物种类的丰度和多样性的改变,而肠道微生物的紊乱有可能增加疾病风险或恶化已患的疾病状况。一项基于16S rRNA基因测序的研究根据荷兰的三个独立队列数据发现,PPI使用与肠道细菌丰富度减少相关,肠道中有20%鉴定到的细菌受到明显的影响,包括Enterococcus、Streptococcus、Staphylococcus属等以及潜在致病细菌Escherichia coli。这些细菌已知可以使个体易感C. difficile,可能有助于解释PPI使用者肠道感染风险增加的机制。此外,两项大型队列研究采用宏基因组测序手段研究了PPI对肠道微生物组的影响。但两项研究中只有Lactobacillus和Streptococcus两个属都表现出在PPI使用者中富集的趋势。值得注意的是,上述这些研究大多是横断面研究,研究人群通常包括各疾病患者和多药治疗后的个体,因此会引入许多混淆因素。尽管许多研究采用了一些特殊的单变量或多变量分析来去除这些混淆因素,但是鉴定药物真正的微生物组特征仍然具有挑战性。另外,对H2RAs的微生物组特征以及其与PPIs的比较的研究目前比较稀缺。
为了解决上述这些问题,我们进行了一项包括了49名健康参与者的纵向研究去比较PPIs和H2RAs引起的微生物组变化。了解这些药物对人体微生物组的影响至关重要,因为它可以帮助我们深入了解胃酸抑制剂与人体微生物组之间错综复杂的相互作用,以及药物与各种疾病风险增加之间的相关性。这些见解将为临床实践和健康管理提供有价值的指导,医生们可以通过优化治疗策略正确选择胃酸抑制剂的种类来确保患者获得最佳的医疗结果和最少的副作用。
- 结果 -
PPI对肠道微生物的扰动明显大于H2RA
PPI disrupts gut microbiome significantly more than H2RA
我们首先评估了PPI和H2RA两组之间所有生活方式指标和参与者临床指标之间的差异,并未发现任何统计学上显著的差异(表S2)。因此,我们直接检查了药物对肠道微生物组的影响。在两种药物干预后,我们共观察到23个物种在肠道中显著富集,其中许多细菌在药物干预后的肠道样本中的流行度也显示出增加的趋势(图1B)。此外,根据eHOMD数据库显示,这23个标记中有16个(约70%)通常在口腔微生物组中发现(图1B)。
在这些差异菌中,PPI和H2RA分别拥有20个和7个差异菌,其中有四个是两个组中共有的。这些共有的差异菌都属于链球菌属(S. salivarius,S. parasanguinis,S. sp. A12,S. oralis),是正常口腔微生物组的一部分。此外,除了S.parasanguinis外,其他四个标志物在PPI组中的效应量大小(Cohen's d)显著高于H2RA组。此外,我们观察到两种药物均引起了肠道中口腔细菌总丰度的显著增加(图1C;表S5)。然而,PPI组中的增加要显著高于H2RA组(中位数约为5.29%; p=1.67e-09),而H2RA组的增幅为0.39%(p=0.13;图1C;表S8)。
为了进一步量化两种药物引起的肠道微生物组变化程度,我们为每组构建了一个RandomForest分类器,以区分药物干预前后的样本。我们使用了所有微生物的丰度而不是通过特征选择挑选的特征作为模型的输入,以最大化保留数据中的信息,避免潜在的省略那些可能不单个特征显著但在与其他特征组合时发挥重要作用的重要特征。在我们的分析中,PPI组在三倍五折交叉验证模型中的AUROC高达0.924(图1D)。相反,H2RA组则只有0.509的AUROC,表明H2RA干预后引起的肠道微生物组变化不足以准确区分干预前后的样本(图1E)。
此外,我们基于它们的中位相对特征权重确定了每个分类器中前20个最重要的特征。值得注意的是,在PPI模型中,有19个重要特征与上述PPI差异菌重叠,说明了这些标志物在区分PPI干预前后样本中发挥了关键作用(图1F)。而在H2RA分类器中,只有6个特征与H2RA标志物相重叠。此外,H2RA重要特征的丰度倍数变化比PPI组低两个数量级(图1G;表S9)。这些发现表明,H2RA治疗引起的肠道微生物组扰动相对PPI组较小,导致H2RA分类器在区分H2RA干预前后样本方面的判别能力较差。
综上所述,我们的研究结果表明与H2RA相比,PPI对整体肠道微生物组的扰动更为显著。
图1 PPI和H2RA对健康志愿者肠道菌群的影响
(A)研究流程图。质子泵抑制剂(PPI;n=23)和组胺2受体拮抗剂(H2RA;n=26)组干预流程和样本收集流程。
(B)热图展示了PPI和H2RA组干预前后丰度发生了显著改变的肠道微生物,颜色代表效应量大小(由Cohen’s d表征)。红色方块表示在服用药物后的样本中富集的物种,而绿色方块则表示在基线期样本中富集的物种。紫色方块表示该物种是否在eHOMD数据库中存在。右边的条形图表示对应组别中物种的总数。下方的散点图表示对应物种在人群中服药前后流行度的变化。红星突出显示已知的与结直肠癌发生发展相关的物种。
(C)箱线图比较了PPI组和H2RA组在基线和干预后肠道中口腔细菌的累积丰度。定义“口腔细菌”为在≥10%的口腔样本中出现的物种。组间连续变量差异检验使用Wilcoxon秩和检验。NS:不显著;*p < 0.05;**p < 0.01;***p < 0.001;****p < 0.0001。
(D)根据肠道微生物区分PPI干预前后样本的机器学习分类器性能。
(E)H2RA分类器的性能。
(F)PPI分类器的前20个最重要特征(左图)及其丰度(中图)和干预前后的丰度倍数变化(右图)。条形图和箱线图中的绿色表示该特征在基线样本中富集,红色表示在干预后富集,黑色表示不富集。
(G)H2RA分类器的前20个中啊哟特征及其丰度和干预前后的丰度倍数变化。
PPI和H2RA对口腔微生物的影响较小
PPI and H2RA induce few disruptions to oral microbiome
这里我们探究了药物引起的肠道微生物组变化是否部分归因于口腔微生物的变化。结果表明, PPI干预并未显著改变任何口腔分类单元(物种和更高分类单元)的丰度(图S3A)。另外也没有发现H2RA服用后富集的四种口腔物种存在于肠道中(图S3A)。这些结果表明,药物引起的口腔微生物组变化并非导致药物引起的肠道微生物组变化的根本原因。这促使我们在随后的分析中探讨口腔到肠道的传播。
补充图3
(A)热图展示了在服用PPI和H2RA后口腔中显著改变的物种的效应量大小(Cohen's d)。红色方块表示在干预后第7天口腔样本中富集的物种。散点图表示两组在药物干预后显著富集物种的流行度的变化。
(B)同一受试者在药物干预前后口腔唾液和肠道粪便样本之间的Bray-Curtis相异性比较。与H2RA组相比,PPI组在药物使用后Bray-Curtis相异性显著下降(PPI组p=4.77e-06; H2RA组p=0.045)。组间连续变量差异检验使用Wilcoxon秩和检验。NS: 无显著差异;*p < 0.05;**p < 0.01;***p < 0.001;****p < 0.0001。
PPI比H2RA更容易引起口腔菌到肠道的传播
PPI induces significantly higher oral-to-gut transmission than H2RA
为了量化药物干预前后口腔到肠道的传播,我们采用了Valles-Colomer等人推荐的流程,并利用StrainPhlAn 4在菌株水平鉴定由MetaPhlAn4鉴定的582个物种中潜在可传播的细菌(详见方法; 表S6)。在基线期,我们鉴定得到了总共21个可传播的物种,其中17个(80.95%)在两个身体部位(即在基线时口腔和肠道样本中的流行度均>10%)都很普遍(图2A; 表S10),表明在健康受试者中部分细菌也存在口腔到肠道的传播。在两组的基线样本中,可传播物种的数量和总丰度没有显著差异(p>0.05; 图S4A; 表S11)。
在使用PPI后,我们观察到可传播物种的数量显著增加(中值为9)(图2A; p=1.02e-04; Wilcoxon配对样本秩和检验)。此外,这些物种的总丰度在使用PPI后也显著增加(图2A; p=1.5e-04)。在使用H2RA后也观察到类似的模式,但相对于PPI组,H2RA组中增加的程度明显较小(图S4B)。
此外,我们比较了PPI组和H2RA组之间可传播物种的流行度的变化。总共存在42个SGBs在至少一个组的样本中表现出口腔到肠道传播,其中有37个在PPI组服药后传播流行度显著上升,而在H2RA组只检测到15个。14个SGBs在两组中都表现出传播流行度的增加,但其中大多数(12个SGBs)在PPI组中的流行度的增幅要高于H2RA组(图2B; 表S12)。
PPI诱导的口腔到肠道传播明显增加的发现可以通过比较同一参与者口腔和肠道微生物组成的Bray-Curtis相异性(BCD)得到进一步的支持。在基线时,可以观察到同一参与者同一时期的口腔和肠道样本的BCD接近1,表示两者微生物的组成几乎不相同(图S3B)。然而,在两次药物干预后,在同一受试者内,口腔和肠道微生物组之间的微生物组成发生了显著变化。与H2RA组相比,PPI组在使用药物后口腔和肠道样本之间的BCD显著减小(图S3B; Wilcoxon配对样本秩和检验; PPI组p=4.77e-06; H2RA组p=0.045)。
另外,我们发现Fusobacterium nucleatum作为一种被广泛研究的结直肠癌(CRC)标志物,在PPI组药物服用后在大约9%的参与者中被鉴定为可传播的物种,但在H2RA组中则没有观察到同样的现象。F. nucleatum在口腔中很常见,已被报道其传播到肠道时会促进炎症和免疫逃避,为肿瘤生长创造有利的环境。它还与肠道中的免疫细胞和其他细菌相互作用,促进了一种免疫抑制的环境,从而促进肿瘤的生长和转移。
上述发现表明,与H2RA相比,PPI可以导致更多的物种从口腔传播到肠道,致使这些物种在肠道中更为普遍分布,包括已知的与CRC相关的标志物——F. nucleatum。
图2 PPI引起的口腔到肠道传播比H2RA更显著
(A)药物干预前后口腔、肠道或两者中普遍存在的物种及其口腔到肠道的传播。顶部的热图从左到右按丰度降序排列物种的流行度(在两个位点中均普遍存在的物种根据其在肠道中的丰度进行排序)。物种根据以下标准分为四类,包括“肠道”物种(n = 295,总数的50.69%)在> 10%的粪便样本和< 10%的唾液样本中存在,“口腔”物种(n = 268,46.05%)仅在口腔样本中普遍存在,“两者”物种(n = 19,3.26%)在> 10%的唾液和粪便样本中普遍存在。左下方的热图显示了两个时间点在PPI和H2RA组中检测到的存在口腔到肠道传播现象的所有物种。从左到右的箱线图分别比较了两组在药物干预前后存在口腔到肠道传播现象的物种的数量和总丰度。NS:不显著;*p < 0.05;**p < 0.01;***p < 0.001;****p < 0.0001。Wilcoxon秩和检验。
(B)散点图显示PPI和H2RA药物干预前后细菌口腔到肠道传播的流行度。左两个面板中的绿色三角形表示基线时细菌的口腔到肠道传播的流行度,而红色正方形表示干预后的传播流行度。最右的面板总结了两组干预前后口腔到肠道传播流行度的变化。灰色标签表示“两者”物种,而紫色标签表示(A)中定义的“口腔”物种。红星突出显示Fusobacterium nucleatum,这是根据先前研究得到的已知的结直肠癌标志物。
(C)箱线图显示在PPI组中服药前后细菌生长速率(通过峰-谷比率测量)显著存在差异的物种。红色标签表示PPI差异富集的物种(即与基线相比,在使用PPI后在肠道中显著富集的细菌)。组间连续变量差异检验使用Wilcoxon秩和检验。NS:不显著;*p < 0.05;**p < 0.01;***p < 0.001;****p < 0.0001。
PPI促进了部分细菌在肠道中的生长
PPI promotes the growth of transmitted species in the gut
为了评估药物是否可能通过促进或抑制细菌的生长来影响肠道物种的丰度,我们采用了一个叫峰-谷比率(PTR)的指标来量化细菌生长速率。具体而言,我们使用DEMIC工具来估计contigs相对于复制起点的距离,从而准确评估不同样本中的细菌生长速率。尽管这种方法对高测序深度有要求,但我们能够对1186种物种(参见方法)中的355种进行生长速率的量化(表S13)。
使用PPI后,总共有5种物种呈现出显著增加的生长速率(PTR值)。其中3种(总数的60%)为在PPI组服用药物后富集的标志菌(图2C)。值得注意的是,PPI还促进一些非标志菌的生长,如嗜热链球菌(Streptococcus thermophilus)和Streptococcus rubneri。此外,我们观察到PPI还会抑制Blautia obeum的生长,这与Maier等人体外药物-微生物作用的研究结果一致。相比之下,H2RA的使用并没有显著影响这些物种的生长(图2C)。
需要注意的是,上述观察到的PPI对细菌生长速率的影响可能归因于药物与微生物群之间的直接相互作用也可能为微生物群内相互作用的影响,这些需要进行进一步的实验验证。
PPI诱导的在肠道中富集的微生物标志物与多种疾病风险相关
PPI-induced gut microbial markers are associated with risks of multiple diseases
为了评估与PPI和H2RA诱导的口腔到肠道可传播物种相关的疾病风险,我们搜索了GMrepo v2数据库,这是一个储存了各种疾病队列肠道微生物组数据及疾病标志物的数据库(方法)。在由PPI或H2RA诱导的42种可传播物种中,有22种在26个队列中的疾病人群中显示出显著富集,共涉及16种疾病,包括心血管疾病(CVD)、克罗恩病(CD)、肝硬化(LC)、炎症性肠病(IBD)、COVID-19、结直肠癌(CRC)等(图3;表S7)。其中,有10种为PPI标志菌,与15种疾病相关;4种为H2RA标志菌,与11种疾病相关。值得注意的是,其中一些物种已经被验证在相应疾病的发生和发展中发挥作用。例如,在我们的研究中富集于8种不同疾病的S. anginosus,以及PPI使用后显示出传播概率增加的Streptococcus constellatus和Streptococcus intermedius,构成了链球菌属链球菌组(SAG)。这组细菌既可以导致化脓性感染,也可以导致恶性肿瘤的发展。它们可以从肠道迁移到其他器官,引起广泛的感染,如肝脓肿和心内膜炎。一些研究还发现,SAG可能是胃癌中的致病菌。此外,一项涉及8973名参与者的横断面研究表明,S. anginosus和Streptococcus oralis与冠状动脉钙化评分强烈相关,表明患心血管疾病的高风险。该研究还确定了其他相关物种,包括在我们的研究中检测到的PPI标志菌S. parasanguinis 和 Streptococcus gordonii,与许多其他几种疾病相关。
这些结果表明,PPI使用引起的特定物种从口腔到肠道的传播相比H2RA而言可能导致更广泛和更高的疾病风险。我们鉴定的这些可传播物种与各种疾病之间的关联强调了PPI诱导的肠道微生物组变化在塑造疾病易感性方面的潜在重要性。
图3 口腔到肠道传播的物种与疾病风险的关联
热图展示了可传播物种在GMrepo数据库中对应的在疾病组中富集的项目数量。热图上方的条形图显示了每种疾病中富集的物种总数。右侧的条形图显示了相应物种在多少种疾病中富集的数量。黄色点标记了PPI标志菌,蓝色点则为H2RA标志菌。
- 讨论 -
主要发现
本研究旨在研究并比较两种广泛使用的胃酸抑制剂——质子泵抑制剂(PPI)和组胺2受体拮抗剂(H2RA)——对肠道微生物组和细菌从口腔到肠道传播的影响。通过对纵向健康队列的研究,我们能够减少潜在的混杂因素如疾病状态和个体差异等,并为这些药物对肠道微生物群的影响提供因果层面的见解。
我们的研究发现与H2RA相比,PPI的使用对肠道微生物群具有更显著的影响和扰动。PPI使得细菌从口腔到肠道传播的程度更高,促使口腔物种在肠道中富集。此外,我们还观察到了部分可传播细菌和肠道原住民微生物的生长速率也可能受到药物的影响。值得注意的是,其中一些可传播的物种已知与各种疾病有关,表明PPI引起的肠道微生物组变化可能与疾病易感性存在关联。例如,仅在PPI组中检测到的结直肠癌已知生物标志物F. nucleatum从口腔到肠道的传播,引发了我们对其在提高疾病风险中的潜在作用的担忧。此外,相较于H2RA ,PPI诱导的标志菌还与其他许多疾病相关。
与前人研究的比较
PPI肠道微生物标志物先前已在MetaCardis队列等横断面队列中由Forslund等人进行了报道。他们的研究整合了来自MetaCardis队列的2,173名欧洲居民的多组学分析。为了去除潜在的混淆因素,他们采用了post-doc方法考虑了多种药物和风险因素来进行去混淆的单变量生物标志物分析。研究人员比较了用他们自己的方法鉴定得到的PPI相关微生物标志与Vila等人根据两个独立队列得到的结果,发现存在较高的一致性。在我们的这项研究中,我们将Forslund等人提供的他们与他人的比较结果与我们的研究结果进行了比较(方法)。我们的分析揭示了MetaCardis队列和我们的研究中PPI标志菌的一致性和差异性(图4;表S14)。
具体而言,21个我们研究中得到的差异菌中的4个与MetaCardis队列中的标志菌相同(S. parasanguinis、S. anginosus、S. salivarius和Veillonella parvula),它们属于口腔和肠道中常见的Streptococcus和Veillonella属。Rothia属在两项研究中PPI干预后也表现出一致的富集。
然而,一些属如Haemophilus、Lactobacillus和Actinomyces仅在MetaCardis队列中差异富集,而像Weissella、Enterobacter和Klebsiella等其他属仅在我们的PPI组中存在差异。此外,在MetaCardis队列中,非PPI使用者中富集的物种是Bifidobacterium longum,而在我们的研究中,PPI组基线富集的物种是Turicibacter sanguinis。这些差异可能反映了研究设计的不同(例如纵向 vs. 横断面分析;疾病 vs. 健康队列)。
图4 本研鉴定得到的质子泵抑制剂(PPI)的标志物与 MetaCardis 研究中的标志物的比较。
条形图显示了PPI干预对微生物组特征的效应量大小和方向(Cliff's delta)。粗体的物种名称表示这些物种在两项研究中的富集方向一致。
优点与局限
这项研究具有几个优点。首先,我们采用了一组健康志愿者进行了纵向研究以减轻疾病和个体差异等混杂因素的影响。这使我们能够识别真正的PPI微生物组标志,帮助研究人员在患者队列中鉴定与疾病相关的标志菌时排除PPI标志菌。其次,许多研究主要集中在口腔或肠道微生物组中的其中一者,通常只描述某些物种在特定部位的存在与否,却忽视了口腔细菌在肠道富集的潜在原因。相反,我们的研究全面考虑了胃酸抑制剂是如何在口腔菌在肠道中富集这一现象中发挥作用的。第三,目前缺乏研究调查H2RA对人类口腔和肠道微生物组的影响。在这项研究中,我们评估了H2RA对这些微生物组造成的干扰,并在症状轻微时展示了在临床实践中选择H2RA而非PPI的可行性。最后,由于唾液样本中存在大量宿主DNA污染,大多数研究采用了16S rRNA基因测序而不是宏基因组测序来剖析口腔微生物组,这往往使研究者们很难在物种和菌株水平上来确定富集在肠道的细菌是否真的来源于口腔。在我们的研究中,我们对所有唾液样本进行了二代鸟枪法宏基因组测序,生成了大量数据用于深入的菌株水平分析。
这项研究也存在一些局限性。首先,考虑到需要保证受试者的权益和福祉,我们选择了短期药物干预和标准剂量以确保药物可能引起的对肠道微生物组的干扰是可逆的。然而在实际的临床实践中,PPI和H2RA的长期或过度使用是非常常见的,这些都可能导致潜在的长期风险。基于观察到的在本研究和以前的PPI研究中引起的对肠道微生物组的大量干扰,为了探讨长期药物效应,比较合适的做法是考虑进行对必须长时间服用PPI患者的观察性或干预性研究,而不是在缺乏明确指示的情况下(在健康人队列中)进行长期的随机临床试验(RCTs)。我们鼓励进一步深入研究探讨长期质子泵抑制剂使用的后果,当然这一过程需要谨慎平衡治疗效益与潜在风险。另外,在我们的研究中使用一周的胃酸抑制剂可能无法完全捕捉剂量相关的微生物效应,而PPI和H2RA标准剂量的不同胃酸抑制效率也可能导致观察到的差异。尽管如此,从临床角度来看,比较这两种药物的推荐剂量在评估它们对微生物群的影响时更有意义。其次,为了最小化两组之间的潜在混杂因素带来的影响,我们将研究的年龄范围限定为18-45岁,这可能限制了将我们的研究结论推广到老年人群体的适用性。最后,我们没有收集血液样本或是进行转录组或代谢组分析,也没有评估样本的物理和化学特性。整合这些多组学数据有可能进一步证实我们的发现。未来的研究应该包含这些方面,以扩展和加强我们的见解。
总的来说,我们的研究提供了证据表明,与H2RA相比,PPI对肠道微生物组和细菌从口腔到肠道传播的影响更大,揭示了PPI与某些疾病高风险相关的潜在机制。我们的结果强调在使用PPI时需要谨慎,并强调探索H2RA等替代治疗方法的重要性。然而,仍然需要进一步的研究来阐明长期使用H2RA对肠道微生物组的影响及其对人类健康的影响,因为相关研究仍然比较有限。
参考文献
Zhu J, Sun C, Li M, et al. Compared to histamine-2 receptor antagonist, proton pump inhibitor induces stronger oral-to-gut microbial transmission and gut microbiome alterations: a randomised controlled trial. Gut Published Online First: 22 November 2023. doi: 10.1136/gutjnl-2023-330168
- 作者简介 -
华中科技大学生命学院陈卫华教授和复旦大学赵兴明教授为共同通讯作者。华中科技大学生命学院博士生竺嘉滢为第一作者。
通讯作者
华中科技大学
陈卫华
博导
陈卫华,华中科技大学教授、博士生导师。长期致力于菌群精细调控与健康研究。通过实验与生物信息学分析相结合,系统发现疾病、健康相关微生物;利用益生菌、益生元、噬菌体或小分子物质对特定细菌精准调控,以达到改善微生态、干预和治疗疾病之目的。近五年以通讯作者身份在Cell Host & Microbe, Advanced Science, Microbiome, Nature Communications, Nucleic Acids Research、Cell Metabolism、Gut等国际顶尖期刊等杂志发表研究论文多篇。文章总引用6000多次,H-因子32。
复旦大学
赵兴明
教授
赵兴明,复旦大学类脑智能科学与技术研究院特聘教授、博士生导师,计算神经科学与类脑智能教育部重点实验室副主任、张江国际脑库执行主任、国家杰出青年科学基金获得者、上海市青年科技启明星和上海市浦江人才计划入选者,IEEE Senior Member、IEEE SMC TC on Systems Biology Co-Chair、IEEE SMC Shanghai Chapter Chair、ACM SIGBio China Vice Chair、中国人工智能学会人工生命与生物信息学专委会副主任、中国计算机学会生物信息学专委会常务委员、上海市计算机学会生物信息学专委会主任等。承担了国家重点研发计划、国家自然科学基金重大研究计划和重点项目在内的多项科研课题。在Nature、Cell Metabolism、IEEE TPAMI、Nature Communications、Genome Medicine、Genome Biology 等国际著名期刊发表SCI论文140余篇, 曾获吴文俊人工智能自然科学一等奖和教育部自然科学二等奖。
猜你喜欢
iMeta简介 高引文章 高颜值绘图imageGP 网络分析iNAP
iMeta网页工具 代谢组MetOrigin 美吉云乳酸化预测DeepKla
iMeta综述 肠菌菌群 植物菌群 口腔菌群 蛋白质结构预测
10000+:菌群分析 宝宝与猫狗 梅毒狂想曲 提DNA发Nature
一文读懂:宏基因组 寄生虫益处 进化树 必备技能:提问 搜索 Endnote
16S功能预测 PICRUSt FAPROTAX Bugbase Tax4Fun
生物科普: 肠道细菌 人体上的生命 生命大跃进 细胞暗战 人体奥秘
写在后面
为鼓励读者交流快速解决科研困难,我们建立了“宏基因组”讨论群,己有国内外6000+ 科研人员加入。请添加主编微信meta-genomics带你入群,务必备注“姓名-单位-研究方向-职称/年级”。高级职称请注明身份,另有海内外微生物PI群供大佬合作交流。技术问题寻求帮助,首先阅读《如何优雅的提问》学习解决问题思路,仍未解决群内讨论,问题不私聊,帮助同行。
点击阅读原文