FPGA优化之高扇出

Fanout即扇出,模块直接调用的下级模块的个数,如果这个数值过大的话,在FPGA直接表现为net delay较大,不利于时序收敛。因此,在写代码时应尽量避免高扇出的情况。但是,在某些特殊情况下,受到整体结构设计的需要或者无法修改代码的限制,则需要通过其它优化手段解决高扇出带来的问题。以下就介绍 三个这样的方法

   首先来看下面这个实例,如图1所示为转置型FIR滤波器中的关键路径时序报告,在DSP in FPGA的FIR专题中有介绍转置型结构FIR滤波器输入数据的扇出较大,在图1中所示为11,因此net delay高达1.231ns。如图2所示,输入数据驱动了11个DSP48E1。

 

图1

 

图2

 在没有优化情况下,该设计的fmax:206.016MHz       

1、寄存器复制

  寄存器复制是解决高扇出问题最常用的方法之一,通过复制几个相同的寄存器来分担由原先一个寄存器驱动所有模块的任务,继而达到减小扇出的目的。通过简单修改代码,如图3所示,复制了4个寄存器:din_d0、din_d1、din_d2、din_d3,din_d、din_d0、din_d1、din_d2分别驱动2个DSP48E1,din_d3驱动3个DSP48E1。其中在代码中为防止综合器优化相同寄存器,在对应信号上加入了(* EQUIVALENT_REGISTER_REMOVAL="NO" *)属性避免被优化

寄存器复制是一种方法,此方法,尽量采用手工自己写代码实现,明确告知综合工具复制哪个寄存器。此时需要注意

    综合选项中Equivalent Register Removal不用选中(XST综合)。另外,可以在代码里添加这一属性

Verilog:

(* equivalent_register_removal="{yes|no}" *)  reg a;

  VHDL:

  attribute equivalent_register_removal: string;
  attribute equivalent_register_removal of {entity_name|signal_name} : {signal|entity} is "{yes |no}";


 

图3

  综合实现后得到时序报告如图4所示,该数据路径上输入数据fanout减为2,对应net delay也减小到了0.57ns。得到设计如图5所示,与期望的相同,复制了4个寄存器来分担fanout。经过寄存器优化后得到fmax:252.143MHz

 

图4

 

图5

2、max_fanout属性

      在代码中可以设置信号属性,将对应信号的max_fanout属性设置成一个合理的值,当实际的设计中该信号的fanout超过了这个值,综合器就会自动对该信号采用优化手段,常用的手段其实就是寄存器复制。属性设置如下代码所示:

(* max_fanout = "3" *)reg  signed [15:0] din_d;

         将din_d信号的max_fanout属性设置成3,经过综合实现后,得到时序报告如图6所示,其中fanout只有2,相应的net delay也只有0.61ns,自动优化效果还不错。结构如图7所示,其中din_d_12_1、din_d_12_2、din_d_12_3是综合器优化后自动添加,即实现了寄存器复制功能。经过设置max_fanout属性优化后得到fmax:257.135MHz

 

图6

 

图7

3、BUFG

         通常BUFG是用于全局时钟的资源,可以解决信号因为高扇出产生的问题。但是其一般用于时钟或者复位之类扇出超级大的信号,此类信号涉及的逻辑遍布整个芯片,而BUFG可以从全局的角度优化布线。而且一块FPGA芯片中BUFG资源也有限,在7k325tffg900上也仅有32个,如果用于普通信号的高扇出优化也不大现实。因此,在时钟上使用BUFG是必须的,但是如果设计中遇到某些复位信号因高扇出产生的时序问题时,可以在此信号上使用BUFG来优化。

         综上,在遇到信号高扇出时,对于普通信号可采用寄存器复制或者设置max_fanout属性优化;而对于复位信号,可加入BUFG优化。

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值