本文记录一下从0入门Transformer的过程
https://zhuanlan.zhihu.com/p/31547842
Transformer之前
说到Transformer,就离不开NLP,就离不开Seq2Seq,毕竟transformer一开始也是和Seq2Seq结合用的。
RNN & NLP
这里先放两个RNN在NLP中的应用,了解一下RNN
RNN收到一个字母,输出更新的隐藏状态和预测的国家分类,到了最后一个字母之后,把国家分类拿出来得到最终的预测。这就是Sequence到一个类的任务。
RNN收到一个字母,输出更新的隐藏状态和预测下一个字母。直到输出终止符,将之前的所有字母合起来,就是最终生成的名字。这是一个状态到Sequence的任务
Seq2Seq
文章:Sequence to Sequence Learning with Neural Networks
其实有了上面两个任务的基础,就理解Seq2Seq是怎么做的了。对输入Seq进行编码,把其中每个单词或者每个字母按顺序输入到RNN中,最终可以得到一个隐藏状态,这个RNN就叫Encoder。然后用这个隐藏状态输入到Decoder中,按照生成名字的方法依次输出预测的单词或者字母,生成输出的Seq。

那么这就有个问题:从第一个词到最后一个词,走了这么久,隐藏状态到底能不能记得住这么多东西呢?能不能有效的找到输出Seq中第j个词到底和输入Seq中的哪个词关系比较大呢?
这就引出了Attention,目的就是学习输出Seq和输入Seq之间的关系,输出Seq不同位置的词是与输入Seq的某些词有关的,只需要关注这些词即可。
Seq2Seq + Attention
仍然是从代码入手,推荐Pytorch的教程。
先看Encode

本文详细介绍了从零开始学习Transformer的过程,包括RNN在NLP中的应用、Seq2Seq模型及其与Attention的结合,重点解析Transformer的Encoder和Decoder结构,以及其工作流程。通过理解word embedding、Position encoding、Self-Attention和Feed forward neural network,深入掌握Transformer的核心原理。
最低0.47元/天 解锁文章
9649

被折叠的 条评论
为什么被折叠?



