【论文阅读】【点云处理】Transformer在点云上的应用

该博客探讨了Transformer在点云处理中的应用,重点介绍了PCT(Point Cloud Transformer)和Point Transformer两个模型。PCT通过naive PCT、Offset-Attention和Neighbor Embedding增强局部特征表示。Point Transformer则提出了新的Attention Module,改进了点云的特征提取。实验结果显示这些方法在点云分类和分割任务上表现出色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Transformer在点云上的应用的研究处于起步阶段。

Transformer的入门可以看我另外一篇博客:从零入门Transformer

PCT: Point Cloud Transformer

论文链接:https://arxiv.org/abs/2012.09688
代码链接:https://github.com/MenghaoGuo/PCT

naive PCT

在这里插入图片描述

1、输入为点云,用MLP做input embedding。
2、送入transformer中,做成DenseNet的连接形式。
3、然后用LBR进一步提取特征到1024维
4、做MA-Pool,就是max-pooling和average-pooling结合,得到一个global feature

做classification:用这个global feature直接算
做Segmentation和法向量预测:需要恢复到原始点的数量,则把global feature和做MA-pool之前的特征拼接起来。然后用LBR做预测。

Offset-Attention

这块是本文声称的一个创新点:

SA代表self attention这个模块, F s a F_{sa} Fsa代表经过self-attention操作之后的特征
在这里插入图片描述

原本的self-attention如上,本文改成了:
在这里插入图片描述
然后我认为作者强行与Laplacian matrix关联了一下。那你说有改进,那你就做ablation study看一下效果提升多少啊。

作者也改了normalization的方法。

Neighbor Embedding for Augmented Local Feature Representation

作者认为attention可以很好的提取全局特征,但对于局部特征来说则弱一些。所以作者提出,先用PointNet++来提取一些局部特征,作为transformer的输入。

对于classification,PointNet++中的采样保留就好。但对于分割。就不要FPS这个,对所有点做局部特征提取。

Experiment

实验做出来效果很好,就是没有ablation study说明提出改进的比较性。

Point Transformer

Attention Module

作者首先给出原本transformer的表达式,其中 δ \delta δ是position encoding, ρ \rho ρ是normalizaion函数,例如softmax:
在这里插入图片描述

然后作者给出了vector attention的表达式,这里作者也没给出引文,我也没听过没查到说vector attention是啥。但也先不管,其中 γ \gamma γ是MLP, β \beta β是relation function,例如减法:
在这里插入图片描述



紧接着,作者给出了本文attention的表达式
在这里插入图片描述
其中, γ \gamma γ, φ \varphi φ, ψ \psi ψ, α \alpha α均是MLP, δ \delta δ如下给出,其中 θ \theta θ也是MLP:
在这里插入图片描述
那我们重新整理一下这个公式:

y i = ∑ ρ ( M L P ( x i ) − M L P ( x j ) + M L P ( x i − x j ) ) ⊙ ( M L P

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值