1.3.1 李群李代数基础
1、群(Group)是一种集合加上一种运算的代数结构。我们把集合记作 A,运算记作 ·, 那么群可以记作 G = (A, ·)。群要求这个运算满足以下几个条件:
2、李群
一般线性群 GL(n) 指 n × n 的可逆矩阵,它们对矩阵乘法成群。
特殊正交群 SO(n) 也就是所谓的旋转矩阵群,其中 SO(2) 和 SO(3) 最为常见。
特殊欧氏群 SE(n) 也就是前面提到的 n 维欧氏变换,如 SE(2) 和 SE(3)。
李群是指具有连续(光滑)性质的群。像整数群 Z 那样离散的群没有连续性质,所以 不是李群。而 SO(n) 和 SE(n),它们在实数空间上是连续的。我们能够直观地想象一个刚 体能够连续地在空间中运动,所以它们都是李群。
3、李代数的引出(比较复杂)
ϕ 反映了 R 的导数性质,ϕ 正是对应到 SO(3) 上的 李代数 so(3);
上面的推导结果暂时还是不太了解
4、李代数的定义
其中二元运算被称为李括号
1.3.2指数与对数运算
1.3.3李代数求导与李群的扰动模型
我们经常会构建与位姿有关的函数,然后讨论该函数关于 位姿的导数,以调整当前的估计值。然而,SO(3), SE(3) 上并没有良好定义的加法,它们 只是群。如果我们把 T 当成一个普通矩阵来处理优化,那就必须对它加以约束。而从李代 数角度来说,由于李代数由向量组成,具有良好的加法运算。因此,使用李代数解决求导 问题的思路分为两种:
1. 用李代数表示姿态,然后对根据李代数加法来对李代数求导。
2. 对李群左乘或右乘微小扰动,然后对该扰动求导,称为左扰动和右扰动模型。
经过复杂的运算,这里仍然含有形式比较复杂的 J,我们不太希望计算它。扰 动模型则提供了更简单的导数计算方式。