1.3 李群和李代数

11.1.1SLAM十四讲中Sophus库的make报错 lvalue required as left operand of assignment unit_complex_.real()-CSDN博客​​​​​​​1最近开始学习高翔博士的《视觉SLAM十四讲》,第四章要求安装一个非模板类的Sophus库。在安装书中提供的第三方库时出现错误。在安装过程中,使用Cmake ..的时候能够顺利通过,接着执行make命令的时候就会出现错误如下:***1. Sophus/sophus/so2.cpp:33:26:error: lvalue required as left operand of assignment...https://blog.csdn.net/weixin_35732969/article/details/88947517最近开始学习高翔博士的《视觉SLAM十四讲》,第四章要求安装一个非模板类的Sophus库。在安装书中提供的第三方库时出现错误。在安装过程中,使用Cmake ..的时候能够顺利通过,接着执行make命令的时候就会出现错误如下:***1. Sophus/sophus/so2.cpp:33:26:error: lvalue required as left operand of assignment...icon-default.png?t=O83Ahttps://blog.csdn.net/weixin_35732969/article/details/88947517

1.3.1 李群李代数基础

 1、群(Group)是一种集合加上一种运算的代数结构。我们把集合记作 A,运算记作 ·, 那么群可以记作 G = (A, ·)。群要求这个运算满足以下几个条件:

2、李群

一般线性群 GL(n) 指 n × n 的可逆矩阵,它们对矩阵乘法成群。 
特殊正交群 SO(n) 也就是所谓的旋转矩阵群,其中 SO(2) 和 SO(3) 最为常见。 
特殊欧氏群 SE(n) 也就是前面提到的 n 维欧氏变换,如 SE(2) 和 SE(3)。

李群是指具有连续(光滑)性质的群。像整数群 Z 那样离散的群没有连续性质,所以 不是李群。而 SO(n) 和 SE(n),它们在实数空间上是连续的。我们能够直观地想象一个刚 体能够连续地在空间中运动,所以它们都是李群。

3、李代数的引出(比较复杂

 ϕ 反映了 R 的导数性质,ϕ 正是对应到 SO(3) 上的 李代数 so(3);

上面的推导结果暂时还是不太了解

4、李代数的定义

 其中二元运算被称为李括号

1.3.2指数与对数运算

 

1.3.3李代数求导与李群的扰动模型

 我们经常会构建与位姿有关的函数,然后讨论该函数关于 位姿的导数,以调整当前的估计值。然而,SO(3), SE(3) 上并没有良好定义的加法,它们 只是群。如果我们把 T 当成一个普通矩阵来处理优化,那就必须对它加以约束。而从李代 数角度来说,由于李代数由向量组成,具有良好的加法运算。因此,使用李代数解决求导 问题的思路分为两种:
 1. 用李代数表示姿态,然后对根据李代数加法来对李代数求导。 
2. 对李群左乘或右乘微小扰动,然后对该扰动求导,称为左扰动和右扰动模型。

经过复杂的运算,这里仍然含有形式比较复杂的 J,我们不太希望计算它。扰 动模型则提供了更简单的导数计算方式。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值