技术笔记
文章平均质量分 63
Tianchao龙虾
这个作者很懒,什么都没留下…
展开
-
NormalEstimation法向量估计理论和代码---PCL源码笔记
NormalEstimation法向量估计理论和代码---PCL源码笔记原创 2022-07-12 10:48:52 · 2262 阅读 · 0 评论 -
RANSAC平面拟合理论和代码---PCL源码笔记
RANSAC平面拟合理论和相关PCL源码学习笔记原创 2022-07-07 21:35:36 · 4822 阅读 · 2 评论 -
Dropout 笔记
Dropout 笔记Dropout操作是指在网络的训练阶段,每次迭代时会从基础网络中随机丢弃一定比例的神经元,然后在修改后的网络上进行数据的前向传播和误差的反向传播。模型在测试阶段会恢复全部的神经元。Dropout是一种常用的正则化方法,可以缓解过拟合问题。Dropout为什么可以缓解过拟合问题一方面,Dropout 可以看作是集成了大量神经网络的Bagging方法。Bagging是指用相同的数据训练若干个不同的模型,最终的预测结果是这些模型进行投票或取平均值而得到的。所以,Dropout通过在每次迭原创 2021-09-16 20:43:22 · 263 阅读 · 0 评论 -
Error string: Could not load library (Poco exception = libopencv_core3.so.3.3
[ERROR] [1618811104.099891119]: PluginlibFactory: The plugin for class ‘jsk_rviz_plugin/BoundingBoxArray’ failed to load. Error: Failed to load library /opt/ros/kinetic/lib//libjsk_rviz_plugins.so. Make sure that you are calling the PLUGINLIB_EXPORT_CLASS转载 2021-08-21 09:34:24 · 2252 阅读 · 0 评论 -
Batch Size大小的选择和其影响
batch size的选择对模型有什么影响呢?因为Batch的选择,首先决定的是下降的方向。如果数据集比较小,完全可以采用full batch learning的形式。好处是:较为准确地朝极值方向迭代优化Full batch learning 可以使用Rprop只记与梯度符号并且针对性单独更新各权值。对于数据集很大,那就有问题了。首先,显存肯定不够。第二个就是以Rprop迭代的方式,会由于各个batch 之间的采样性差异,各次梯度修正值相互低效,无法修正。所以才有了后来的RMSProp的方案。原创 2021-06-25 08:23:02 · 5873 阅读 · 0 评论 -
在ROS kinetic中编译python3的cv_bridge
运行环境:Anaconda3, ROS Kinetic python3.x问题:ROS Kinetic 自带的cv_bridge 是基于python2.7的。如果使用python3.x,需要重新编译cv_bridge.步骤:先把anaconda3的环境deactivate,直接进入系统自带的环境,命令:conda deactivate在已有的ROS工作空间添加opencv_vision包,命令:cd catkin_ws/srccatkin config -DPYTHON_EXE原创 2021-04-09 11:50:49 · 361 阅读 · 0 评论