论文代码阅读笔记
文章平均质量分 77
论文代码阅读笔记
Tianchao龙虾
这个作者很懒,什么都没留下…
展开
-
NMS 和 Soft-NMS 代码阅读笔记
Soft-NMS 代码阅读笔记Soft-NMS 论文阅读笔记可以参考这篇博客。Soft-NMS代码出自于:https://github.com/DocF/Soft-NMS/blob/master/soft_nms.py先来看一下Soft-NMS的整体流程:代码如下:import numpy as npimport matplotlib.pyplot as pltdef plot_bbox(dets, c='k', title='None'): x1 = dets[:, 0]原创 2021-10-09 14:47:31 · 317 阅读 · 0 评论 -
Faster-RCNN 代码阅读笔记(二)
Faster-RCNN 代码阅读笔记(二)代码链接:https://github.com/chenyuntc/simple-faster-rcnn-pytorch先放出一张图,我觉得总结的不错,来自于这个博客3. VGG16RoIHead上面已经知道,RPN输出了2000个RoIs区域传入到RoIHead中。首先通过RoI pooling层使每个RoI生成固定尺寸的feature map,进入到后面可利用全连接操作来进行目标分类和定位。换句话说,ROI Pooling 就是将不同大小的roi 池化原创 2021-08-26 10:06:42 · 373 阅读 · 0 评论 -
Faster-RCNN 代码阅读笔记(一)
Faster-RCNN 代码阅读笔记(一)代码链接:https://github.com/chenyuntc/simple-faster-rcnn-pytorch可以看到,网络结构分为三个部分:Backbone: VGG16Region Proposal NetworkClassfication and Regression1. BackboneFaster-RCNN 是以VGG16作为backbone,代码具体如下:decom_vgg16 代码def decom_vgg16()原创 2021-08-26 10:03:37 · 554 阅读 · 0 评论 -
U-net 代码阅读笔记
U-net 代码阅读笔记论文阅读笔记可以参考这篇博客代码链接:https://github.com/milesial/Pytorch-UNet/blob/master/unet/unet_model.py先来看一下它的网络结构:先来看一下代码的整体结构,构建了一个UNet类,四个downsampling layers,四个upsampling layers和一个输出网络层。class UNet(nn.Module): def __init__(self, n_channels, n_cl原创 2021-08-20 15:30:51 · 590 阅读 · 0 评论 -
ResNet 代码阅读笔记
ResNet 代码阅读笔记论文笔记可以查看这篇博客。先来回顾以下网络的框架:可以看到,ResNet主要分为四个block。而对于层数不一样的结构,block也不一样。因此在代码中,需要定义两个block类,分别为BasicBlock和Bottleneck,如下所示:def conv3x3(in_planes, out_planes, stride=1): "3x3 convolution with padding" return nn.Conv2d(in_planes, out_pla原创 2021-08-19 15:58:16 · 364 阅读 · 0 评论 -
VGG 代码阅读笔记
VGG 代码阅读笔记论文链接: https://arxiv.org/abs/1409.1556v6论文阅读笔记可以查看这篇博客一、 网络结构VGG的网络结构具体如下所示:import torchimport torch.nn as nnfrom torchvision.models import vgg16cfg = { 'A' : [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'B'原创 2021-08-18 14:47:08 · 186 阅读 · 0 评论 -
3D Bounding Box Estimation Using Deep Learning and Geometry 代码笔记
3D Bounding Box Estimation Using Deep Learning and Geometry 代码笔记代码链接: https://github.com/skhadem/3D-BoundingBox论文笔记链接:https://blog.csdn.net/wuchaohuo724/article/details/1160814731. 网络结构先看以下网络结构2. 代码实现从上图可以看到,从一个feature map后面添加三个分支:Dimensions Regre原创 2021-07-28 16:01:05 · 391 阅读 · 0 评论 -
SORT 代码阅读笔记
SORT 代码阅读笔记先创建个实例self.tracker = Sort.Sort(max_age=max_age, min_hits=min_hits)这里有两个参数,max_age表示在多少帧中没有检测,trackers就会中止。min_hits代表持续多少帧检测到,生成trackers。检测器每来一帧数据,进行检测,返回检测结果detections=[[x1,y1,x2,y2,score],[....]][[x_1,y_1,x_2,y_2,score], [....]][[x1,y1,x原创 2021-07-15 09:14:48 · 1414 阅读 · 1 评论 -
Pointnet++ 代码阅读笔记
Pointnet++ 代码阅读笔记代码地址:https://github.com/yanx27/Pointnet_Pointnet2_pytorchPointNet++ 论文笔记可以参考这篇博客。一、网络框架可以由论文的图中看到, 主要分为三个部分:PointNetSetAbstraction这部分源码用了 farthest point sampling, query ball 算法。PointNetFeaturePropagation这部分包括 sample and grouping原创 2021-05-19 14:47:20 · 917 阅读 · 5 评论 -
PointNet 代码阅读笔记
PointNet 代码解读笔记代码地址:https://github.com/fxia22/pointnet.pytorch论文笔记看这篇笔记。1. T-Net先来看看T-Net的网络结构:(1) Input transformThe first transformation network is a mini-PointNet that takes raw point cloud as input and regresses to a 3 × 3 matrix. It’s composed原创 2021-05-14 08:23:00 · 357 阅读 · 0 评论