【论文阅读】通信定位技术《Neural RF SLAM for unsupervised positioning and mapping with channel state information》

这是一篇来自高通的论文,论文标题《Neural RF SLAM for unsupervised positioning and mapping with channel state information》,目的是解决通信中的定位和环境构建问题。文章的思路是通过SLAM技术,在无监督的方式下,通过没有标记位置信息的信道状态信息(CSI)实现联合用户定位和环境构建,此方法不增加额外的现场数据标注成本,并且适应性更好。
首先文章速读:

主要问题:

  1. 室内定位精度:文章针对未来通信网络(如5G Advanced和6G)中对亚米级精度室内定位的需求,提出了一个解决方案。
  2. 环境映射:文章旨在创建一个环境地图,这对于联合感知和通信应用也很重要。环境映射面临的挑战包括如何从数据中学习环境表示以及如何高效获取环境地图而不增加额外的现场调查成本。

方法:

  1. 神经网络架构:提出了一个基于编码器-解码器架构的神经网络模型,用于从CSI值中联合学习用户位置和环境映射。
    • 编码器:将CSI值映射到用户位置。
    • 解码器:通过使用虚拟锚点参数化环境,模拟传播物理过程,并重建ToF集合。
  2. 无监督学习:模型在没有用户或锚点位置信息的情况下进行训练,采用端到端的训练方式。
  3. 集合预测任务:神经网络的任务是集合预测,使用集合差异损失(如Hausdorff或Chamfer损失)来解决多路径辅助定位中的关联问题。

贡献:

  1. 亚米级精度:在基于单个锚点SISO设置的合成射线追踪数据集上,实现了亚米级精度的定位。
  2. 环境映射精度:在2D环境中恢复环境地图的中位数误差为4厘米,在3D环境中为15厘米。
  3. 无监督定位和映射:提出了一种无监督的方法,利用多路径效应进行定位,不需要标记数据。
  4. 虚拟锚点的使用:通过虚拟锚点参数化环境,这些虚拟锚点与环境地图和锚点位置有关,可以用于定位。
  5. 灵活性和扩展性:模型可以处理不同的输入模式(如CSI或TDoA或ToF),并且可以扩展到多锚点情况。
    文章通过提出一种新的神经网络架构,解决了室内定位和环境映射的问题,同时提供了一种无监督的学习方法,这对于未来通信网络中的定位技术具有重要意义。

在这里插入图片描述

摘要:

我们提出了一种神经网络架构,用于在无监督的方式下,从没有位置信息的信道状态信息(CSI)值中联合学习用户位置和环境映射,直至等距。该模型基于编码器-解码器架构。编码器网络将CSI值映射到用户位置。解码器网络通过使用虚拟锚点对环境进行参数化来对传播的物理特性进行建模。它旨在根据编码器输出和虚拟锚点位置,使用超分辨率方法,重建从CSI中提取的飞行时间(ToF)集。神经网络的任务是集合预测,并相应地进行端到端训练。所提出的模型仅通过实施基于物理的解码器来学习可解释的潜在信息,即用户位置。结果表明,该模型在单锚SISO设置的基于合成射线追踪的数据集上实现了亚米精度,同时在2D环境中恢复环境地图的中位数误差为4厘米,在3D环境中为15厘米。

I. 引言

精确的室内定位,达到亚米级精度,是未来通信网络,如5G Advanced和6G的主要需求之一。这个问题是经典的,并且已经有许多解决方案可用。基于飞行时间(ToF)、到达时间差(TDoA)或到达角度(AoA)的测距方法需要多个锚点来根据三角测量或三边测量确定用户位置。另一方面,指纹识别方法通过训练一个监督学习算法,来使用像CSI这样的迹线找到用户位置,需要使用标记的数据。测距方法依赖于视距。此外,基于ToF和TDoA的方法需要额外的同步和校准开销。指纹识别方法需要标记的数据,这些数据应随着环境变化而持续更新。然而,多径环境提供了额外的资源,可以被利用于定位。想法是,即使只有一个锚点,如果环境在每个点提供了足够的多径成分,定位也是可能的。换句话说,每个位置的多径签名是独特的,可以用于定位。基于CSI的指纹识别方法隐含地建立在这个假设之上。为了明确地利用多径进行定位,我们需要环境地图,这对于联合感知和通信应用也很重要。映射步骤涉及一些挑战。首先,我们需要找到一种合适的方式代表环境地图,这种表示方式易于从数据中学习,并且可以用于定位。接下来,环境地图应该以一种不增加额外现场调查成本的方式高效获得。在本文中,我们提出了一种神经网络架构,它可以从没有任何用户或锚点位置信息的CSI值中联合学习环境地图和用户位置。CSI值用于通信目的,因此在实地可用。它们被持续收集,因此可以用于紧密跟踪环境变化。我们使用虚拟锚点对环境进行参数化,并与定位神经网络一起联合学习它们的位置。该架构使用从CSI值中提取的ToF值,结合入物理传播模型。本文展示了所提出的模型可以学习位置和地图,精度达到亚米级。本文的结构如下。在第二节中,我们提出了问题表述。我们在第三节中提出了我们提出的神经网络架构。实验结果在第四节中展示。

A. 相关工作

同时定位与地图构建(SLAM)问题探讨了一个移动机器人是否能够被放置在一个未知位置的未知环境中,并且机器人能否逐步构建这个环境的一致地图,同时确定其在地图中的位置[1]。最初源于机器人学的SLAM问题已经在许多领域找到了应用,包括无线通信,应用于精确定位等。特别是,SLAM程序已经成功转化为多径辅助定位方法,其中锚点相当于地标或特征。许多SLAM的概率解决方案,如EKF-SLAM、FastSLAM或Graph-SLAM,已经在多径辅助定位中得到应用,如[2]、[3]、[4]中的作品。此外,与RF指纹识别相比,无线通信中的SLAM定位在显式建模多径环境方面有所不同,而RF指纹识别则创建了信道测量和用户位置之间的相关模型。
从信道测量(CSI)中准确提取多径分量是SLAM解决多径辅助定位的关键因素。在这方面,现有工作可以根据其操作频率和带宽进行分类,如超宽带(UWB)[3]、Sub-6GHz[2]和毫米波(mmWave)系统[6]、[7]。多径分量的估计精度直接与可用带宽或无线信道的分辨率相关。因此,UWB系统中估计的多径延迟具有更高的精度,而同样的因素在Sub-6GHz系统中成为了限制。另一种基于多径分量类型的SLAM分类。只有经历其传播路径上的反射的多径分量保证携带环境的几何信息。使用衍射和散射路径进行SLAM更具挑战性,因此,对不期望的多径分量保持鲁棒性至关重要。
当只有ToF、距离测量或多径分量的AoA中的一种模式可用时,提取虚拟锚点位置更具挑战性。在这些情况下,多个假设自然出现在多次测量后的分布位置中,许多方法包括维持多个假设的手段[8]、[9]、[10]。[8]中的作者提出使用极坐标来仅模拟范围的SLAM,具有更好地处理多模态分布的优势,不需要批量处理线性化,也不需要像虚拟锚点数量那样的先验知识。在[9]中,SLAM被表述为一个矩阵分解问题,其中观察的特征与多维状态空间线性相关。谱系统识别被用来直接学习动态系统参数,如状态空间、运动模型和观测模型。[10]中的作者提出了相对过度参数化的EKF和极坐标。机器学习在定位方面的关注主要集中在监督设置和指纹识别方法上。这些方法从纯神经网络解决方案到带有kNN的特征工程(参见[11]及其参考文献)。CSI是所有这些模型的共同输入。
与指纹识别方法不同,我们的方法是无监督的。我们的方法是一个轻量级的无监督模型,利用经历多次反射的多径。该方法可以潜在地扩展到其他效应,如衍射。我们的方法不需要虚拟锚点和提取的ToF之间的先验数据关联标签。潜在的网络可以从任何输入(如CSI或TDoA或ToF,如果有的话)提取空间信息。尽管该模型是针对单个锚点场景提出的,但可以通过连接多个解码器,每个锚点一个,来扩展到多锚点。

II. BACKGROUND AND PROBLEM SETUP

A. 多径辅助定位

我们考虑一个具有静态锚点的传播环境。我们假设一个MIMO-OFDM设置,用户通过多个子载波上的多个天线与锚点进行主动通信。锚点位置由p0给出。每个用户估计信道并获得CSI值,表示为复数Nsc × Ntx × Nrx数组,其中Nsc表示子载波数量,Ntx和Nrx分别表示发送和接收天线的数量。
在这里插入图片描述 图1:虚拟发射机

多径信息,如路径的飞行时间(ToF)和到达角度(AoAs),编码在CSI值中。然而,使用的带宽和天线长度限制了路径的可分辨性。尽管如此,每个用户仍然可以从CSI使用如MUSIC和ESPIRIT算法[12]提取一组ToF和AoAs。记用户u的可分辨路径数量为Nu。在本文中,我们仅关注SISO情况,即Ntx = Nrx = 1。这意味着用户只能从CSI样本中获得ToF信息。更准确地说,在用户和锚点之间没有任何同步的情况下,我们希望以鲁棒的方式仅获得每条路径相对于视线(LOS)路径的到达时间差(TDoA)。我们在本文中考虑了TDoA和ToF的情况。我们假设给定了一个没有位置信息的CSI值数据集。请注意,CSI是作为通信链路的一部分计算的。因此,与监督指纹识别定位相比,获取未标记的CSI值具有较小的开销。记用户u ∈ U的CSI为CSIu。联合定位和映射问题可以表述如下:给定CSIu,我们希望获得环境地图和每个用户的位置pu。我们将展示,如果有足够多的多径成分可用,那么解决这个问题是可能的。正如我们接下来将看到的,每个多径都会产生一个新的锚点,称为虚拟锚点,用于参数化环境。

B. 环境映射

类似于其他SLAM工作中的环境映射[13]、[2],从无线传播的角度来看,环境地图是使用虚拟锚点来参数化的。这意味着,从用户的视角来看,每条路径似乎源自一个锚点,这个锚点实际上是作为环境地图和锚点位置的函数而虚拟引入的。对于镜面反射,虚拟锚点的位置与用户位置无关。然而,对于衍射和散射多径使用虚拟锚点则更具挑战性。对于镜面反射,虚拟锚点的位置是锚点位置从反射器的反射(图1)。对于虚拟锚点位置pi和用户位置pu,反射路径的飞行时间计算为∥pi−pu∥/c,类似于物理锚点,其中c是光速。对于AoA计算也是如此。因此,环境中的所有镜面反射可以使用一组固定的虚拟锚点来建模。在这项工作中,我们只关注镜面反射。通过这个选择,联合定位和映射问题可以概率性地表述为公式1:
在这里插入图片描述
其中I等于{0, 1, 2, …, M},M表示参数化虚拟锚点的数量。在下一节中,我们将看到如何使用神经网络架构解决这个问题。请注意,在上述表述中,锚点位置pu也是未知的。

III. NEURAL RF SLAM

作为上述似然优化的替代,我们最小化从CSIu中提取的飞行时间(ToFs),即{τj,u},与从pu和pi重建的飞行时间,即{∥pi−pu∥/c, i ∈ I}之间的差异。我们可以使用在集合预测神经网络中使用的集合差异损失,例如Hausdorff或Chamfer损失。问题的集合预测性质与多径辅助定位中的关联问题有关。为了进一步解释,假设用户u从CSIu中提取了τu,j。即使知道虚拟锚点位置,用户也无法将ToFs与虚拟锚点关联起来,除了视线(LOS)ToF之外。这个挑战在多径辅助定位中是众所周知的[14]。
在这项工作中,我们将CSI提取的ToFs和重建的ToFs之间的关联问题作为分配问题[15]来解决。分配问题涉及将两个集合的元素关联起来,以使整体关联成本最小化。将CSI提取的ToF τj,u与重建的ToF {∥pi−pu∥/c, i ∈ I}关联的损失仅仅是它们的绝对差异。这是一个组合优化问题,可以使用匈牙利算法[15]在多项式时间内解决。匈牙利算法将第j个ToF与πH(j)'th重建的ToF关联起来,其中πH(•)是索引之间的关联函数。关联的ToF是两个向量,可以使用任何范数,比如ℓ(•, •)在相应的向量空间进行比较。优化问题可以写成:
在这里插入图片描述
这种表述的一个挑战是,数据集中的任何新样本都会向问题中添加一个新的未知pu,带有2个或3个未知参数。这使得优化问题和对新用户的推断都具有挑战性。然而,我们可以通过用一个神经网络fθ(•)替换pu来摊销推断成本,该神经网络将CSIu映射到位置信息。因此,最终的优化问题由下式给出:
在这里插入图片描述
其中θ是神经网络参数。我们可以使用梯度下降优化来解决这个问题。一旦模型被训练,fθ(•)可以用作定位函数,从而显著减少推断时间。

A. 架构:Neural RF SLAM
总结来说,我们引入了一个编码器-解码器架构来解决联合定位和映射问题。编码器fθ(•)将CSI映射到用户位置,而解码器则建立在物理传播的基础上,将用户位置映射到预测的ToFs。解码器由虚拟锚点的笛卡尔坐标参数化,这些参数与编码器参数一起学习。见图2。图2中的解码器将编码器fθ(•)的输出pu映射到一组ToF {τu},这些ToF对应于从每个学习到的虚拟锚点pj的多路径。解码器在初始化时具有固定数量的可学习虚拟锚点,Nu,这些锚点使用目标ToF重建误差进行优化。参数Nu在特征提取期间选择(见III-D),以便该值代表环境中存在的虚拟锚点的总数。每个用户位于所有虚拟锚点Nu的子集中,并使用数据关联(见III-B)阶段来识别正确的子集。由于我们优化ToFs而没有关于房间大小或锚点位置的额外信息,解决方案将具有等距歧义。例如,整个空间的平移和旋转会改变坐标,但不会改变ToFs。这种歧义的第一个影响是优化更难收敛。我们将在下一小节中讨论一些挑战。
在这里插入图片描述

B. 数据关联
如上所述,对于优化,我们需要解决集合预测任务,我们计算重建ToF和CSI提取ToF之间的损失。我们使用匈牙利算法来关联ToFs,然后计算两个向量之间的损失。我们选择了平滑的L1损失,因为它比MSE损失表现更好。我们还探索了标准的损失函数,如Chamfer损失和贪婪损失。为了计算贪婪损失,我们对ToFs进行排序,然后使用所选的度量标准计算向量之间的差异。请注意,我们可以关联视线ToFs。提取的最小的ToFs应该与位置为p0的主锚点关联。因此,我们可以将损失函数分解为两部分,一部分计算视线ToFs之间的差异,另一部分需要先解决关联问题,然后计算差异。我们观察到这种分解改善了算法的收敛性。

C. 非CSI输入和可变大小
CSI的选择作为神经网络的输入是任意的。对于模型来说,关键是能够访问可以通过解码器计算的ToFs或其他模态。输入可以是与位置相关的任何模态。一个明显的选择是使用提取的ToFs。在这种情况下,编码器网络应该是一个集合函数,它作用于ToFs集合,并且对输入的排列不变。此外,它应该能够处理可变大小的输入。为了处理可变大小的集合作为输入,我们实现了基于DeepSet[16]的架构。DeepSet模型首先将每个单独的ToF映射到一个固定特征。这些特征以排列不变的方式聚合,例如通过平均,然后传递给第二个神经网络。请注意,CSI可以被视为ToFs的排列不变嵌入。

D. 特征提取和虚拟锚点初始化
当没有可用的genie ToF信息时,我们依赖于基于经典超分辨率的算法从CSI中获取它们。MUSIC[12]算法使用信道脉冲响应(CIR)的频率响应来计算源和噪声分量的特征方向。此外,为了在嘈杂环境中获得更好的性能,MUSIC算法使用每个用户位置的多个CSI测量来计算随机协方差矩阵。为了解决源枚举问题,从而近似虚拟锚点的数量,我们使用了[17]中给出的最小描述长度(MDL)方法。在训练期间,我们可以使用更多的虚拟锚点。随着训练的进行,只有其中的一部分继续更新,其余的在训练后可以被移除。我们观察到这种过参数化有助于优化。

E. 解决等距歧义
我们已经提到,问题只能解决到等距变换的程度(见图3)。换句话说,对于基于ToF的解码器和未知的锚点和虚拟锚点位置,解在旋转、平移和反射后仍然有效。解空间中存在的这些等距变换使得优化问题具有挑战性。我们可以打破其中的一些对称性。例如,我们可以任意固定锚点位置,这打破了平移对称性。进一步地,对于其中一个虚拟锚点,我们可以将其所有坐标固定为与锚点位置相同的坐标,除了一个坐标。例如,在2D情况下,我们将锚点位置固定在(0, 0),将一个虚拟锚点固定在(0, y)。通过这种方式,我们可以部分地打破旋转对称性,因为只有那些将一个虚拟锚点的坐标映射到固定坐标的旋转才产生有效的解。剩余的歧义是反射和这些旋转。这些歧义可以在训练后使用一些已知位置的样本来学习等距变换来固定。这些样本仅用于学习旋转矩阵。请注意,核心网络仍然是以无监督的方式训练的,标记数据仅用于校正网络。
在这里插入图片描述

F. 其他模式和多锚点情况
我们到目前为止一直专注于ToF作为主要模式。尽管TDoA,视线路径和反射路径之间的时间差,至少具有与ToF相同的歧义,但添加AoA可以打破反射对称性。本文的重点是ToF和TDoA。我们假设SISO通信,这意味着我们无法从CSI中提取AoA。最后,该模型可以通过将多个解码器串联起来,每个锚点一个解码器,来扩展到多锚点。

G. 非镜面反射多路径
虽然我们到目前为止一直关注环境中的多次反射,但神经SLAM解码器非常适合重建其他可以使用几何一致的射线追踪方法建模的传播效应。当环境由散射多径组成时,一些接收到的ToFs并不提供有关虚拟发射机位置的额外信息,这些路径通常出现在脉冲响应的一个延迟元素周围的不可解析路径中。一些文章使用混合几何模型来建模这一点,其中非镜面多径被视为没有与发射机位置的基本几何相关性的干扰成分。在最近的研究中,例如[18],使用簇来建模散射,簇的扩散取决于墙壁的平滑度,而有些人则通过将由于衍射导致的NLOS路径视为噪声来处理这个问题。射线追踪方法试图使用几何理论和材料属性来建模衍射路径。其中一种方法是几何衍射理论(GTD)[19]。GTD假设对于位于阴影区域的UE位置,衍射射线形成一个以边缘为公共轴,以入射点为顶点的“Kellers锥”[20]。随着UE在阴影区域周围移动,衍射射线似乎起源于沿着边缘移动的入射点。通过3D旋转真实锚点可以建立虚拟锚点[21]。基于GTD的射线追踪模型是真实世界场景的良好近似,如[22]所报告的那样。在室内环境中,刀刃衍射模型高估了某些极化、入射角和墙壁属性的损失,这个问题可以使用其他不规则形状边缘的场景中的GTD模型来规避。请注意,上述结果适用于6GHz以上的频率。GTD模型为建模由于衍射而导致的飞行时间提供了几何框架。这可以通过使用依赖于用户位置的虚拟锚点位置参数化在网络的解码器部分中实现。我们将这些扩展作为未来工作。

IV. 实验

在ToFs被用作定位网络的输入时,我们实现了一个简单的MLP(多层感知机)。当CSI被用作输入时,我们使用了一个具有卷积层、批量归一化和ReLU非线性的卷积架构。我们还实现了基于DeepSet[16]的架构来处理可变大小的ToF输入。我们使用Adam优化器来训练这些网络。对于主要实验,我们使用了使用MUSIC从CSI中提取的TDoA作为最具挑战性的场景。为了进行消融研究,以隔离特征提取的影响,我们有时使用真实的ToF或TDoA。
A. 数据集
我们使用了两个数据集来进行2D和3D环境的实验。我们假设了一个基于OFDM的SISO通信系统,其参数如表I所示。使用MUSIC算法从该通信系统的CSI值中提取ToF和TDoA。我们为基于反射的环境实现了一个简单的射线追踪器,从中生成了2D数据集。环境是一个有4个反射面的房间,发射机放置在位于(0.1, 0.1)的角落。对于3D数据集6(a),我们使用REMCOM软件生成了数据[23],用于一个室内环境。我们考虑了一个被4面墙、天花板和地板包围的单个房间环境。墙面表面光滑,环境中没有衍射或散射。我们有单次和双次反射的数据集。在两种环境中,样本都是从环境中随机采集的。数据集包含2D情况的4000个样本,以及3D情况的13000个样本。我们在这两个数据集上评估我们的模型。十分之一的样本用于测试集。为了定性评估,我们在测试集中的样本可视化为点云,其中每个点根据其CSI幅度的对数进行颜色编码。图3给出了一个使用真实ToF训练的模型的示例。可以清楚地看到,模型学习到了等距性。我们报告了误差的中位数和90%分位数。
在这里插入图片描述
表I:系统参数

B. 基线
我们将Neural RF SLAM与四个基线进行比较。第一个基线是[24]中的MAP辅助单锚点方法,该方法需要嘈杂的ToF和AoA信息以及已知的地图。另一个基线是监督指纹识别定位,我们可以访问带有用户位置标签的CSI样本。我们还考虑了我们模型的两种其他变体。首先,我们考虑了环境地图已知,虚拟锚点已知的情况。接下来是用户位置已知但地图未知的情况。在这两种情况下,我们的架构仍然可以通过在优化中固定一些相关参数来解决问题。对于后两种情况,我们使用MUSIC提取的标签进行训练。结果如表II所示。
在这里插入图片描述
表II:2D定位(1)、(2)、(3)和映射(4)的基线。方法(2)、(3)、(4)使用MUSIC提取的标签

C. 端到端无监督Neural SLAM
我们针对两种不同的模态运行了Neural RF SLAM,即ToF和TDoA。结果如表III和IV所示。对于2D情况,从CSI值中提取的标签大约有2cm的90%分位数误差。在表III中的方法(3)中,我们从信噪比为10dB的嘈杂CSI中提取TDoA。此外,大约10%的训练数据具有比环境中的源的数量更少的多径数量。图4显示了定位误差的累积分布函数。对于所有实验,我们报告了中位数和90%分位数定位误差,以及作为真实和预测虚拟锚点之间MSE中位数和90%分位数的映射误差。表III中的结果突出了优化TDoA的挑战,针对三种不同的编码器。请注意,当处理固定大小的集合时,MLP工作得很好。对于基于CSI的编码器,我们使用了一个2层跳跃连接的1D卷积网络,并使用随机高斯样本初始化解码器中的可学习虚拟锚点坐标
在这里插入图片描述
表III:无监督TDOA神经SLAM
在这里插入图片描述
表IV:无监督ToF神经SLAM
在这里插入图片描述
图4:基于2D TDoA的端到端无监督模型

D. 消融研究

  1. 集合损失比较:如前面章节所述,我们可以使用不同的集合损失来训练网络。在这一部分,我们比较了Chamfer、Hausdorff和匈牙利损失以及贪婪损失的重建质量,如第III-B节所述。我们使用这些损失中的每一个训练了网络一次,并报告了重建的点云。图5显示,匈牙利算法几乎可以完美地恢复点云,与其他损失相比。请注意,通过多次重复训练并选择最小损失的模型,我们可以为所有损失找到可比的结果,除了Hausdorff损失。然而,匈牙利算法提供了更好和更快的收敛性,并且不需要多次训练的开销
    在这里插入图片描述
    在这里插入图片描述

  2. 增加VA数量:当数据集支持双次弹跳或环境中的反射表面数量增加时,优化问题涉及更大的变量数量集合预测。我们在3D中进行了实验,引入了双次弹跳,并将虚拟锚点的数量从6增加到25。对于每个用户,一些多径分量的增益较低,无法有效提取。这使得训练更具挑战性,因为我们每个用户更新虚拟锚点的ToF数量减少。表V显示了使用真实ToF直接时的比较。尽管我们的方法仍然可以找到亚米级精度的解决方案,但当虚拟锚点数量增加时,性能略有下降。
    在这里插入图片描述
    表V:增加虚拟锚点数量

  3. 降低带宽:我们还研究了降低带宽对2D神经SLAM精度的影响。像MUSIC这样的特征提取算法随着带宽的减少而解析出更少的多径。这影响了我们的定位网络在从环境中采样新的CSI时的性能,当训练在提取的ToF上时,优化可能会陷入局部最小值。
    在这里插入图片描述
    表VI:带宽对定位的影响

E. 模型复杂性
与使用具有12层7x7卷积的ResNet的现有深度学习基础指纹识别方法相比[11],我们的模型使用了一个单层的5x5卷积,后面跟着一个2层的MLP。与基于最近邻的模型[25]相比,这些模型需要大约1.1秒的推理时间,我们的模型的前向传递大约需要3毫秒。使用多数投票方法或最小二乘解来解决每个新的CSI样本的SLAM问题的经典方法需要更多的计算。一旦模型训练完成,我们的模型在推理时间不需要任何优化。表VII显示了模型复杂性,包括可训练参数的数量和前向传递模型的大小。
在这里插入图片描述
表VII 模型复杂性

V. 结论

我们提出了一种名为Neural RF SLAM的方法,它可以从未标记的CSI样本中学习位置和映射,精度达到等距性。我们的实验表明,对于单天线-单锚点设置,我们可以在镜面反射主导的环境中实现亚米级精度的定位和映射。作为未来的工作,可以将其他传播效应,如散射和衍射,添加到模型中。对于某些非镜面反射效应,仍然可以使用计算ToF不同的虚拟锚点表示(见[2])。这种方法对于像衍射这样的效应来说似乎更具挑战性。

参考文献

[1] H. Durrant-Whyte 和 T. Bailey, “Simultaneous localization and mapping: part i,” IEEE Robotics Automation Magazine, vol. 13, no. 2, pp. 99–110, 2006.
[2] C. Gentner, T. Jost, W. Wang, S. Zhang, A. Dammann, 和 U.-C. Fiebig, “Multipath Assisted Positioning with Simultaneous Localization and Mapping,” IEEE Transactions on Wireless Communications, vol. 15, no. 9, pp. 6104–6117, Sep. 2016.
[3] E. Leitinger, F. Meyer, F. Hlawatsch, K. Witrisal, F. Tufvesson, 和 M. Z. Win, “A belief propagation algorithm for multipath-based slam,” IEEE Transactions on Wireless Communications, vol. 18, no. 12, pp. 5613–5629, 2019.
[4] H. Naseri 和 V. Koivunen, “Cooperative simultaneous localization and mapping by exploiting multipath propagation,” IEEE Transactions on Signal Processing, vol. 65, no. 1, pp. 200–211, 2017.
[5] E. Leitinger, P. Meissner, C. Rüdisser, G. Dumphart, 和 K. Witrisal, “Evaluation of position-related information in multipath components for indoor positioning,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 11, pp. 2313–2328, 2015.
[6] Y. Ge, H. Kim, F. Wen, L. Svensson, S. Kim, 和 H. Wymeersch, “Exploiting diffuse multipath in 5g slam,” in Proc. IEEE GLOBECOM 2020, pp. 1–6, 2020.
[7] H. Kim, K. Granström, L. Gao, G. Battistelli, S. Kim, 和 H. Wymeersch, “5g mmwave cooperative positioning and mapping using multimodel phd filter and map fusion,” IEEE Transactions on Wireless Communications, vol. 19, no. 6, pp. 3782–3795, 2020.
[8] F. Herranz, A. Llamazares, E. Molinos, 和 M. Ocaña, “A comparison of slam algorithms with range only sensors,” in Proc. IEEE International Conference on Robotics and Automation (ICRA), pp. 4606–4611, 2014.
[9] B. Boots 和 G. Gordon, “A spectral learning approach to range-only SLAM,” in International Conference on Machine Learning. PMLR, 2013, pp. 19–26.
[10] J. Djugash 和 S. Singh, “A robust method of localization and mapping using only range,” in Experimental Robotics. Springer, 2009, pp. 341– 351.
[11] R. S. Ayyalasomayajula, A. Arun, C. Wu, S. Sharma, A. R. Sethi, D. Vasisht, 和 D. Bharadia, “Deep learning based wireless localization for indoor navigation,” Proceedings of the 26th Annual International Conference on Mobile Computing and Networking, 2020.
[12] R. Roy 和 T. Kailath, “Esprit-estimation of signal parameters via rotational invariance techniques,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 37, no. 7, pp. 984–995, 1989.
[13] C. Gentner 和 T. Jost, “Indoor positioning using time difference of arrival between multipath components,” in International Conference on Indoor Positioning and Indoor Navigation, 2013, pp. 1–10.
[14] M. Ulmschneider, C. Gentner, T. Jost, 和 A. Dammann, “Multiple hypothesis data association for multipath-assisted positioning,” in 2017 14th Workshop on Positioning, Navigation and Communications (WPNC), 2017, pp. 1–6.
[15] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval research logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.
[16] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, 和 A. J. Smola, “Deep Sets,” Advances in Neural Information Processing Systems, vol. 30, 2017.
[17] A. Barron, J. Rissanen, 和 B. Yu, “The minimum description length principle in coding and modeling,” IEEE transactions on information theory, vol. 44, no. 6, pp. 2743–2760, 1998.
[18] F. Wen, J. Kulmer, K. Witrisal, 和 H. Wymeersch, “5G positioning and mapping with diffuse multipath,” IEEE Transactions on Wireless Communications, vol. 20, no. 2, pp. 1164–1174, 2020, publisher: IEEE.
[19] J. B. Keller, “Geometrical theory of diffraction,” Josa, vol. 52, no. 2, pp. 116–130, 1962.
[20] Z. Yun 和 M. F. Iskander, “Ray tracing for radio propagation modeling: Principles and applications,” IEEE Access, vol. 3, pp. 1089–1100, 2015.
[21] A. K. Mucalo, R. Zentner, 和 T. Delaˇc, “Virtual source modeling for diffraction in reference channel models,” in 2013 7th European Conference on Antennas and Propagation (EuCAP). IEEE, 2013, pp. 1880–1883.
[22] T. S. Rappaport, G. R. MacCartney, S. Sun, H. Yan, 和 S. Deng, “Small-scale, local area, and transitional millimeter wave propagation for 5g communications,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 12, pp. 6474–6490, 2017.
[23] Wireless-insite. https://www.remcom.com/ wireless-insite-em-propagation-software/.
[24] O. Kanhere, S. Ju, Y. Xing, 和 T. S. Rappaport, “Map-assisted millimeter wave localization for accurate position location,” in 2019 IEEE Global Communications Conference (GLOBECOM), 2019, pp. 1– 6.
[25] A. Sobehy, E. Renault, 和 P. Mühlethaler, “Csi-mimo: K-nearest neighbor applied to indoor localization,” in ICC 2020-2020 IEEE International Conference on Communications (ICC). IEEE, 2020, pp. 1–6.

延伸阅读:匈牙利算法

匈牙利算法(Hungarian Algorithm),又称为Kuhn-Munkres算法或Munkres算法,是一种用于解决分配问题的组合优化算法。它由经济学家和运筹学家哈罗德•库恩(Harold Kuhn)以及计算机科学家詹姆斯•马尔克斯(James Munkres)分别独立提出。匈牙利算法特别适用于解决以下问题:
给定一个n×n的成本矩阵C,其中C[i][j]表示将第i个任务分配给第j个工人的成本,算法的目标是找到一种任务到工人的分配方案,使得总成本最小。
匈牙利算法的基本思想包括以下几个步骤:

  1. 减量:对每一行找到一个最小的元素,并从该行的每项减去这个最小元素,使得该行有一个零元素。
  2. 星标:对每一列再找出行中已减去过的最小元素,并用星号标记。
  3. 覆盖零:试图通过星标元素覆盖矩阵中的每一个零。如果能够覆盖矩阵中所有的零,那么就已经找到了一个最小成本的完美匹配。
  4. 调整:如果无法覆盖所有的零,算法将进入调整阶段。这涉及到改变矩阵中的某些元素值,以构造出更多的零,直到可以找到一个完美匹配。
  5. 迭代:重复上述步骤,直到找到最优解。

匈牙利算法是解决分配问题中最有效的算法之一,其时间复杂度为O(n^3),适用于中等规模的问题。在许多领域,如网络流量管理、排班问题、运输问题等,匈牙利算法都有广泛的应用。
在文章中提到的上下文中,匈牙利算法被用于解决神经网络中的集合预测任务,具体是关联CSI(信道状态信息)提取的ToFs(时间飞行)与重建的ToFs,以此来最小化关联成本,即它们的绝对差值。这在多路径辅助定位中是一个关键的步骤,因为存在多个可能的ToFs与虚拟锚点之间的关联方式,而匈牙利算法可以有效地找到成本最低的关联方案。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

bylander

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值