生成模型--GAN用于图像漫画特效算法

图像漫画特效算法

  这种风格迁移的算法都快要被GAN统治了 。

主要思路

  可以分两部分:
  1)简化图像,即去除图像细节,仅保留图像主要信息;
  在简化图像步骤,除了meanshift算法外,大家肯定会想到很多边缘保持的图像平滑算法,比如经典的双边滤波、导向滤波等等。更多内容可以查阅这里,该文作者提供了多种边缘保持平滑算法(主要包括双边滤波,域变换,WLS、导向滤波、L0范数平滑等 )效果对比以及matlab代码,算法很多,但是本人认为L0范数平滑算法比较适合做漫画特效,平滑的结果图看着更有层次感。

   2)生成合适的边缘线条,最后将两者合成即可,合成其实就是将两者简单一乘即可。
  图像经过平滑简化后,边缘检测效果也会更好。杂乱无章的零碎边缘线条将大大减少,检测到的图像边缘会更连贯,更集中。有了简化图和边缘图,那么基本就可以生成漫画特效了。
  传统方法为直接将两者合成,即将简化图像结果与边缘检测结果直接合成。但是,由于检测的边缘往往很生硬,缺乏平滑的笔触效果,这样直接合成的漫画特效看起来不是很理想。本算法的主要创新点就是在提取的边缘基础上,增加了线积分卷积(LIC算法)滤波,经过该算法处理后,提取的边缘将会非常圆润、平滑,视觉上更接近漫画手绘效果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值